{"title":"低功耗下的寄存器分配与绑定","authors":"Jui-Ming Chang, Massoud Pedram","doi":"10.1145/217474.217502","DOIUrl":null,"url":null,"abstract":"This paper describes a technique for calculating the switching activity of a set of registers shared by different data values. Based on the assumption that the joint pdf (probability density function) of the primary input random variables is known or that a suffficiently large number of input vectors has been given, the register assignment problem for minimum power consumption is formulated as a minimum cost clique covering of an appropriately defined compatibility graph (which is shown to be transitively orientable). The problem is then solved optimally (in polynomial time) using a max-cost ow algorithm. Experimental results confirm the viability and usefulness of the approach in minimizing power consumption during the register assignment phase of the behavioral synthesis process.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"194","resultStr":"{\"title\":\"Register Allocation and Binding for Low Power\",\"authors\":\"Jui-Ming Chang, Massoud Pedram\",\"doi\":\"10.1145/217474.217502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a technique for calculating the switching activity of a set of registers shared by different data values. Based on the assumption that the joint pdf (probability density function) of the primary input random variables is known or that a suffficiently large number of input vectors has been given, the register assignment problem for minimum power consumption is formulated as a minimum cost clique covering of an appropriately defined compatibility graph (which is shown to be transitively orientable). The problem is then solved optimally (in polynomial time) using a max-cost ow algorithm. Experimental results confirm the viability and usefulness of the approach in minimizing power consumption during the register assignment phase of the behavioral synthesis process.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"194\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes a technique for calculating the switching activity of a set of registers shared by different data values. Based on the assumption that the joint pdf (probability density function) of the primary input random variables is known or that a suffficiently large number of input vectors has been given, the register assignment problem for minimum power consumption is formulated as a minimum cost clique covering of an appropriately defined compatibility graph (which is shown to be transitively orientable). The problem is then solved optimally (in polynomial time) using a max-cost ow algorithm. Experimental results confirm the viability and usefulness of the approach in minimizing power consumption during the register assignment phase of the behavioral synthesis process.