用于文本分类的向量空间模型的统计评价

Yash Vijay, Anurag Sengupta, K. George
{"title":"用于文本分类的向量空间模型的统计评价","authors":"Yash Vijay, Anurag Sengupta, K. George","doi":"10.1109/SSCI.2018.8628920","DOIUrl":null,"url":null,"abstract":"In our paper, we statistically evaluate categorisation performance of a distributed embedding technique called word2vec, and popular sparse representations, on the labelled 20-newsgroups dataset and unlabelled United States political news dataset. We deploy extensive parametric variations of vector-space models for both supervised and unsupervised topic-categorisation, relatively gauge them, and report the best results. We introduce a methodology to deploy distributed embeddings for unsupervised learning using Principal Component Analysis, which performs exceedingly well on both datasets, both by topic coherence scores, and visual interpretation of token content of topic mixtures learnt. Our motivation is primarily driven by proving that dense word embeddings can perform as good as, if not better than, traditional frequency-based vector space models. In addition, this paper demonstrates that distributed embeddings based Support Vector Machines performs best for supervised publisher categorisation on the political news dataset, whereas Term-Frequency document Frequency based Support Vector Machines outperforms supervised topic categorisation in the 20-newsgroups dataset.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Statistical Evaluation of Vector-space Models for Text Categorisation\",\"authors\":\"Yash Vijay, Anurag Sengupta, K. George\",\"doi\":\"10.1109/SSCI.2018.8628920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our paper, we statistically evaluate categorisation performance of a distributed embedding technique called word2vec, and popular sparse representations, on the labelled 20-newsgroups dataset and unlabelled United States political news dataset. We deploy extensive parametric variations of vector-space models for both supervised and unsupervised topic-categorisation, relatively gauge them, and report the best results. We introduce a methodology to deploy distributed embeddings for unsupervised learning using Principal Component Analysis, which performs exceedingly well on both datasets, both by topic coherence scores, and visual interpretation of token content of topic mixtures learnt. Our motivation is primarily driven by proving that dense word embeddings can perform as good as, if not better than, traditional frequency-based vector space models. In addition, this paper demonstrates that distributed embeddings based Support Vector Machines performs best for supervised publisher categorisation on the political news dataset, whereas Term-Frequency document Frequency based Support Vector Machines outperforms supervised topic categorisation in the 20-newsgroups dataset.\",\"PeriodicalId\":235735,\"journal\":{\"name\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2018.8628920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们的论文中,我们统计评估了一种名为word2vec的分布式嵌入技术和流行的稀疏表示在标记的20个新闻组数据集和未标记的美国政治新闻数据集上的分类性能。我们为有监督和无监督主题分类部署了向量空间模型的广泛参数变化,相对衡量它们,并报告最佳结果。我们介绍了一种使用主成分分析部署分布式嵌入进行无监督学习的方法,该方法在两个数据集上都表现得非常好,包括主题一致性分数和对学习主题混合物的标记内容的视觉解释。我们的动机主要是为了证明密集词嵌入可以表现得与传统的基于频率的向量空间模型一样好,甚至更好。此外,本文还证明了基于分布式嵌入的支持向量机在政治新闻数据集上的监督出版商分类中表现最好,而基于Term-Frequency文档频率的支持向量机在20个新闻组数据集上的监督主题分类中表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Statistical Evaluation of Vector-space Models for Text Categorisation
In our paper, we statistically evaluate categorisation performance of a distributed embedding technique called word2vec, and popular sparse representations, on the labelled 20-newsgroups dataset and unlabelled United States political news dataset. We deploy extensive parametric variations of vector-space models for both supervised and unsupervised topic-categorisation, relatively gauge them, and report the best results. We introduce a methodology to deploy distributed embeddings for unsupervised learning using Principal Component Analysis, which performs exceedingly well on both datasets, both by topic coherence scores, and visual interpretation of token content of topic mixtures learnt. Our motivation is primarily driven by proving that dense word embeddings can perform as good as, if not better than, traditional frequency-based vector space models. In addition, this paper demonstrates that distributed embeddings based Support Vector Machines performs best for supervised publisher categorisation on the political news dataset, whereas Term-Frequency document Frequency based Support Vector Machines outperforms supervised topic categorisation in the 20-newsgroups dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信