W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai
{"title":"基于分层支持向量机的血细胞图像分类","authors":"W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai","doi":"10.1109/ISM.2011.29","DOIUrl":null,"url":null,"abstract":"The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Blood Cell Image Classification Based on Hierarchical SVM\",\"authors\":\"W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai\",\"doi\":\"10.1109/ISM.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Blood Cell Image Classification Based on Hierarchical SVM
The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.