基于分层支持向量机的血细胞图像分类

W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai
{"title":"基于分层支持向量机的血细胞图像分类","authors":"W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai","doi":"10.1109/ISM.2011.29","DOIUrl":null,"url":null,"abstract":"The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.","PeriodicalId":339410,"journal":{"name":"2011 IEEE International Symposium on Multimedia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Blood Cell Image Classification Based on Hierarchical SVM\",\"authors\":\"W. Tai, Rouh-Mei Hu, H. Hsiao, Rong-Ming Chen, J. Tsai\",\"doi\":\"10.1109/ISM.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":339410,\"journal\":{\"name\":\"2011 IEEE International Symposium on Multimedia\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

在血液涂片中识别和计数血细胞的问题既有理论意义又有实际意义。血细胞的鉴别计数为病理学家诊断和治疗许多疾病提供了宝贵的信息。本文提出了一种基于多类支持向量机的高效分层血细胞图像识别与分类方法。在这个自动化过程中,血细胞的分割和分类是最重要的阶段。我们对数字显微图像中染色的血细胞进行分割,并提取每一段的几何特征,从而对不同类型的血细胞进行识别和分类。将实验结果与病理学家手工检测结果进行了比较,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blood Cell Image Classification Based on Hierarchical SVM
The problem of identifying and counting blood cells within the blood smear is of both theoretical and practical interest. The differential counting of blood cells provides invaluable information to pathologist for diagnosis and treatment of many diseases. In this paper we propose an efficient hierarchical blood cell image identification and classification method based on multi-class support vector machine. In this automated process, segmentation and classification of blood cells are the most important stages. We segment the stained blood cells in digital microscopic images and extract the geometric features for each segment to identify and classify the different types of blood cells. The experimental results are compared with the manual results obtained by the pathologist, and demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信