Web应用程序恶意请求机器学习检测方法的最优参数选择

Alexandr O. Bolgov, A. Kamenskih
{"title":"Web应用程序恶意请求机器学习检测方法的最优参数选择","authors":"Alexandr O. Bolgov, A. Kamenskih","doi":"10.1109/scm55405.2022.9794881","DOIUrl":null,"url":null,"abstract":"Firewalls are still one of the key technologies for web applications protection from modern cyber threats. The in-depth protection strategy starts with isolation using firewalls and continues with other protection systems, such as intrusion detection systems. The problem with firewalls is false negatives, which can be mitigated with additional filtering tools. The use of machine learning methods is one of the possible directions in the development of defense systems. The article presents the selection of optimal parameters for several classification methods used in machine learning. For this task, a set of training data with common attacks on web applications is used.","PeriodicalId":162457,"journal":{"name":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Selection of Optimal Parameters for Machine Learning Methods of Detecting Malicious Requests to Web Applications\",\"authors\":\"Alexandr O. Bolgov, A. Kamenskih\",\"doi\":\"10.1109/scm55405.2022.9794881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Firewalls are still one of the key technologies for web applications protection from modern cyber threats. The in-depth protection strategy starts with isolation using firewalls and continues with other protection systems, such as intrusion detection systems. The problem with firewalls is false negatives, which can be mitigated with additional filtering tools. The use of machine learning methods is one of the possible directions in the development of defense systems. The article presents the selection of optimal parameters for several classification methods used in machine learning. For this task, a set of training data with common attacks on web applications is used.\",\"PeriodicalId\":162457,\"journal\":{\"name\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XXV International Conference on Soft Computing and Measurements (SCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/scm55405.2022.9794881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XXV International Conference on Soft Computing and Measurements (SCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/scm55405.2022.9794881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

防火墙仍然是保护web应用程序免受现代网络威胁的关键技术之一。深度保护策略首先使用防火墙进行隔离,然后继续使用其他保护系统(如入侵检测系统)。防火墙的问题是误报,这可以通过额外的过滤工具来缓解。使用机器学习方法是国防系统发展的可能方向之一。本文介绍了几种用于机器学习的分类方法的最佳参数的选择。对于这项任务,使用了一组针对web应用程序的常见攻击的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Selection of Optimal Parameters for Machine Learning Methods of Detecting Malicious Requests to Web Applications
Firewalls are still one of the key technologies for web applications protection from modern cyber threats. The in-depth protection strategy starts with isolation using firewalls and continues with other protection systems, such as intrusion detection systems. The problem with firewalls is false negatives, which can be mitigated with additional filtering tools. The use of machine learning methods is one of the possible directions in the development of defense systems. The article presents the selection of optimal parameters for several classification methods used in machine learning. For this task, a set of training data with common attacks on web applications is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信