用SDRE方法研究最优控制系统的稳定性

S. Elloumi, Ines Sansa Aousgi, N. Braiek
{"title":"用SDRE方法研究最优控制系统的稳定性","authors":"S. Elloumi, Ines Sansa Aousgi, N. Braiek","doi":"10.1109/SSD.2012.6198040","DOIUrl":null,"url":null,"abstract":"State Dependant Riccati Equation (SDRE) method is gaining more and more place as a promising emerged methodology for nonlinear control system design, and therefore becoming the basic theory about which are articulated many relevant recent approaches for the optimal control resolution of a control-affine nonlinear system. SDRE approach aims to solve a nonlinear optimal control problem through a Riccati equation that depends on the state. Our main contribution in this paper is to carry out the analysis of nonlinear systems associated with SDRE controllers aiming to determine new sufficient conditions for their stability.","PeriodicalId":425823,"journal":{"name":"International Multi-Conference on Systems, Sygnals & Devices","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the stability of optimal controlled systems with SDRE approach\",\"authors\":\"S. Elloumi, Ines Sansa Aousgi, N. Braiek\",\"doi\":\"10.1109/SSD.2012.6198040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State Dependant Riccati Equation (SDRE) method is gaining more and more place as a promising emerged methodology for nonlinear control system design, and therefore becoming the basic theory about which are articulated many relevant recent approaches for the optimal control resolution of a control-affine nonlinear system. SDRE approach aims to solve a nonlinear optimal control problem through a Riccati equation that depends on the state. Our main contribution in this paper is to carry out the analysis of nonlinear systems associated with SDRE controllers aiming to determine new sufficient conditions for their stability.\",\"PeriodicalId\":425823,\"journal\":{\"name\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2012.6198040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Multi-Conference on Systems, Sygnals & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2012.6198040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

状态相关里卡蒂方程(SDRE)方法作为一种新兴的非线性控制系统设计方法,越来越受到人们的重视,并成为研究仿射非线性控制系统最优控制分辨率的基础理论。SDRE方法旨在通过依赖于状态的Riccati方程来解决非线性最优控制问题。我们在本文中的主要贡献是对与SDRE控制器相关的非线性系统进行分析,旨在确定其稳定性的新充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability of optimal controlled systems with SDRE approach
State Dependant Riccati Equation (SDRE) method is gaining more and more place as a promising emerged methodology for nonlinear control system design, and therefore becoming the basic theory about which are articulated many relevant recent approaches for the optimal control resolution of a control-affine nonlinear system. SDRE approach aims to solve a nonlinear optimal control problem through a Riccati equation that depends on the state. Our main contribution in this paper is to carry out the analysis of nonlinear systems associated with SDRE controllers aiming to determine new sufficient conditions for their stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信