一种新的最优插值神经网络设计方法及其在声学瞬态定位和分类中的应用

S. Sin, R. de Figueiredo
{"title":"一种新的最优插值神经网络设计方法及其在声学瞬态定位和分类中的应用","authors":"S. Sin, R. de Figueiredo","doi":"10.1109/ICNN.1991.163369","DOIUrl":null,"url":null,"abstract":"An evolutionary design methodology for neural networks based on the theory of optimal interpolation, (OI) is presented. A limited application of the OI net to the problems of localization and classification of acoustic transients is discussed. The modified recursive least squares (RLS) learning algorithm presented provides an avenue for the acquisition of an appropriate neural network configuration to solve a given pattern classification problem. The authors show that both OI and the back-propagation (BP) of comparable configurations perform satisfactorily in the simulations. The RLS OI method is preferred, however, because BP would occasionally run into some local minima and convergence could be very slow for the more complex decision boundaries between classes. The authors demonstrate that the OI net is particularly suited for application to the localization and classification of acoustic transients.<<ETX>>","PeriodicalId":296300,"journal":{"name":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A new design methodology for optimal interpolative neural networks with application to the localization and classification of acoustic transients\",\"authors\":\"S. Sin, R. de Figueiredo\",\"doi\":\"10.1109/ICNN.1991.163369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An evolutionary design methodology for neural networks based on the theory of optimal interpolation, (OI) is presented. A limited application of the OI net to the problems of localization and classification of acoustic transients is discussed. The modified recursive least squares (RLS) learning algorithm presented provides an avenue for the acquisition of an appropriate neural network configuration to solve a given pattern classification problem. The authors show that both OI and the back-propagation (BP) of comparable configurations perform satisfactorily in the simulations. The RLS OI method is preferred, however, because BP would occasionally run into some local minima and convergence could be very slow for the more complex decision boundaries between classes. The authors demonstrate that the OI net is particularly suited for application to the localization and classification of acoustic transients.<<ETX>>\",\"PeriodicalId\":296300,\"journal\":{\"name\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1991.163369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991 Proceedings] IEEE Conference on Neural Networks for Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1991.163369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于最优插值理论的神经网络进化设计方法。讨论了OI网络在声瞬态定位和分类问题上的有限应用。提出的改进递归最小二乘(RLS)学习算法为获取合适的神经网络配置来解决给定的模式分类问题提供了一种途径。仿真结果表明,等效构型的OI和反向传播(BP)性能都令人满意。然而,RLS OI方法是首选方法,因为BP偶尔会遇到一些局部最小值,并且对于类之间更复杂的决策边界,收敛速度可能非常慢。作者论证了OI网络特别适合于声学瞬变的定位和分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new design methodology for optimal interpolative neural networks with application to the localization and classification of acoustic transients
An evolutionary design methodology for neural networks based on the theory of optimal interpolation, (OI) is presented. A limited application of the OI net to the problems of localization and classification of acoustic transients is discussed. The modified recursive least squares (RLS) learning algorithm presented provides an avenue for the acquisition of an appropriate neural network configuration to solve a given pattern classification problem. The authors show that both OI and the back-propagation (BP) of comparable configurations perform satisfactorily in the simulations. The RLS OI method is preferred, however, because BP would occasionally run into some local minima and convergence could be very slow for the more complex decision boundaries between classes. The authors demonstrate that the OI net is particularly suited for application to the localization and classification of acoustic transients.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信