{"title":"三维模型分析中基于人工免疫系统的动态聚类算法","authors":"Xianghua Li, Chao Gao, Tianyang Lu, Li Tao","doi":"10.1109/ICNC.2012.6234541","DOIUrl":null,"url":null,"abstract":"In the field of content-based 3D model retrieval, classifying and organizing 3D model database is an important fundamental research, which is critical for improving the retrieval performance. Clustering is one of the most effective methods to classify 3D models. However, there has been little work on it. This paper proposes a dynamic clustering algorithm based on artificial immune system for classifying 3D models, which not only can classify existing models, but can deal with new incremental models. Experimental results show that our algorithm can obtain better classification of 3D models.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dynamic clustering algorithm based on artificial immune system for analyzing 3D models\",\"authors\":\"Xianghua Li, Chao Gao, Tianyang Lu, Li Tao\",\"doi\":\"10.1109/ICNC.2012.6234541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of content-based 3D model retrieval, classifying and organizing 3D model database is an important fundamental research, which is critical for improving the retrieval performance. Clustering is one of the most effective methods to classify 3D models. However, there has been little work on it. This paper proposes a dynamic clustering algorithm based on artificial immune system for classifying 3D models, which not only can classify existing models, but can deal with new incremental models. Experimental results show that our algorithm can obtain better classification of 3D models.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A dynamic clustering algorithm based on artificial immune system for analyzing 3D models
In the field of content-based 3D model retrieval, classifying and organizing 3D model database is an important fundamental research, which is critical for improving the retrieval performance. Clustering is one of the most effective methods to classify 3D models. However, there has been little work on it. This paper proposes a dynamic clustering algorithm based on artificial immune system for classifying 3D models, which not only can classify existing models, but can deal with new incremental models. Experimental results show that our algorithm can obtain better classification of 3D models.