{"title":"具有非局部和Stieltjes积分边界条件的非线性caputo型分数阶q差分方程的唯一正解","authors":"Ahmad Y. A. Salamooni, D. D. Pawar","doi":"10.7153/fdc-2019-09-19","DOIUrl":null,"url":null,"abstract":"This paper contain a new discussion for the type of generalized nonlinear Caputo fractional $q$-difference equations with $m$-point boundary value problem and Riemann-Stieltjes integral $\\tilde{\\alpha}[x]:=\\int_{0}^{1}~x(t)d\\Lambda(t).$ By applying the fixed point theorem in cones, we investigate an existence of a unique positive solution depends on $\\lambda>0.$ We present some useful properties related to the Green's function for $m-$point boundary value problem.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Unique positive solution for nonlinear Caputo-type fractional q-difference equations with nonlocal and Stieltjes integral boundary conditions\",\"authors\":\"Ahmad Y. A. Salamooni, D. D. Pawar\",\"doi\":\"10.7153/fdc-2019-09-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper contain a new discussion for the type of generalized nonlinear Caputo fractional $q$-difference equations with $m$-point boundary value problem and Riemann-Stieltjes integral $\\\\tilde{\\\\alpha}[x]:=\\\\int_{0}^{1}~x(t)d\\\\Lambda(t).$ By applying the fixed point theorem in cones, we investigate an existence of a unique positive solution depends on $\\\\lambda>0.$ We present some useful properties related to the Green's function for $m-$point boundary value problem.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2019-09-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unique positive solution for nonlinear Caputo-type fractional q-difference equations with nonlocal and Stieltjes integral boundary conditions
This paper contain a new discussion for the type of generalized nonlinear Caputo fractional $q$-difference equations with $m$-point boundary value problem and Riemann-Stieltjes integral $\tilde{\alpha}[x]:=\int_{0}^{1}~x(t)d\Lambda(t).$ By applying the fixed point theorem in cones, we investigate an existence of a unique positive solution depends on $\lambda>0.$ We present some useful properties related to the Green's function for $m-$point boundary value problem.