互动信念模型中的参与者是否对模型本身具有元确定性?

S. Fukuda
{"title":"互动信念模型中的参与者是否对模型本身具有元确定性?","authors":"S. Fukuda","doi":"10.4204/EPTCS.335.14","DOIUrl":null,"url":null,"abstract":"In an interactive belief model, are the players\"commonly meta-certain\"of the model itself? This paper formalizes such implicit\"common meta-certainty\"assumption. To that end, the paper expands the objects of players' beliefs from events to functions defined on the underlying states. Then, the paper defines a player's belief-generating map: it associates, with each state, whether a player believes each event at that state. The paper formalizes what it means by:\"a player is (meta-)certain of her own belief-generating map\"or\"the players are (meta-)certain of the profile of belief-generating maps (i.e., the model).\"The paper shows: a player is (meta-)certain of her own belief-generating map if and only if her beliefs are introspective. The players are commonly (meta-)certain of the model if and only if, for any event which some player i believes at some state, it is common belief at the state that player i believes the event. This paper then asks whether the\"common meta-certainty\"assumption is needed for an epistemic characterization of game-theoretic solution concepts. The paper shows: if each player is logical and (meta-)certain of her own strategy and belief-generating map, then each player correctly believes her own rationality. Consequently, common belief in rationality alone leads to actions that survive iterated elimination of strictly dominated actions.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are the Players in an Interactive Belief Model Meta-certain of the Model Itself?\",\"authors\":\"S. Fukuda\",\"doi\":\"10.4204/EPTCS.335.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an interactive belief model, are the players\\\"commonly meta-certain\\\"of the model itself? This paper formalizes such implicit\\\"common meta-certainty\\\"assumption. To that end, the paper expands the objects of players' beliefs from events to functions defined on the underlying states. Then, the paper defines a player's belief-generating map: it associates, with each state, whether a player believes each event at that state. The paper formalizes what it means by:\\\"a player is (meta-)certain of her own belief-generating map\\\"or\\\"the players are (meta-)certain of the profile of belief-generating maps (i.e., the model).\\\"The paper shows: a player is (meta-)certain of her own belief-generating map if and only if her beliefs are introspective. The players are commonly (meta-)certain of the model if and only if, for any event which some player i believes at some state, it is common belief at the state that player i believes the event. This paper then asks whether the\\\"common meta-certainty\\\"assumption is needed for an epistemic characterization of game-theoretic solution concepts. The paper shows: if each player is logical and (meta-)certain of her own strategy and belief-generating map, then each player correctly believes her own rationality. Consequently, common belief in rationality alone leads to actions that survive iterated elimination of strictly dominated actions.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.335.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.335.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在交互式信念模型中,玩家是否“普遍确定”模型本身?本文将这种隐含的“共同元确定性”假设形式化。为此,本文将玩家信念的对象从事件扩展到根据潜在状态定义的函数。然后,论文定义了玩家的信念生成地图:它与每个状态相关联,即玩家是否相信该状态下的每个事件。这篇论文将其定义为:“玩家对自己的信念生成地图(元)确定”或“玩家对信念生成地图(即模型)(元)确定”。这篇论文表明:当且仅当一个玩家的信念是内省的,他对自己的信念生成地图是(元)确定的。玩家通常(元)确定模型,当且仅当,对于任何玩家i在某种状态下相信的事件,玩家i在某种状态下相信该事件是普遍的信念。然后,本文提出是否需要“共同元确定性”假设来对博弈论解概念进行认识论表征。这篇论文表明:如果每个玩家都是合乎逻辑的,并且(元)确定自己的策略和信念生成地图,那么每个玩家都正确地相信自己的理性。因此,对理性的共同信念会导致行为在严格支配行为的迭代淘汰中幸存下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are the Players in an Interactive Belief Model Meta-certain of the Model Itself?
In an interactive belief model, are the players"commonly meta-certain"of the model itself? This paper formalizes such implicit"common meta-certainty"assumption. To that end, the paper expands the objects of players' beliefs from events to functions defined on the underlying states. Then, the paper defines a player's belief-generating map: it associates, with each state, whether a player believes each event at that state. The paper formalizes what it means by:"a player is (meta-)certain of her own belief-generating map"or"the players are (meta-)certain of the profile of belief-generating maps (i.e., the model)."The paper shows: a player is (meta-)certain of her own belief-generating map if and only if her beliefs are introspective. The players are commonly (meta-)certain of the model if and only if, for any event which some player i believes at some state, it is common belief at the state that player i believes the event. This paper then asks whether the"common meta-certainty"assumption is needed for an epistemic characterization of game-theoretic solution concepts. The paper shows: if each player is logical and (meta-)certain of her own strategy and belief-generating map, then each player correctly believes her own rationality. Consequently, common belief in rationality alone leads to actions that survive iterated elimination of strictly dominated actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信