粒子群优化中的模型协作

M. Dub, A. Stefek
{"title":"粒子群优化中的模型协作","authors":"M. Dub, A. Stefek","doi":"10.1109/MECHATRONIKA.2014.7018270","DOIUrl":null,"url":null,"abstract":"This article explores cooperation of different mathematical models in the same system if the Particle Swarm Optimization (PSO) method is used for system parameter identification. Four different realistic system mathematical models of the second order were used to create different state spaces of the agents' positions. All the experiments were evaluated in wide and narrow intervals around the fitness function global minimum with two different PSO method initial agents' setup. Better results can be seen in some special cases when comparing model cooperation to single model optimization.","PeriodicalId":430829,"journal":{"name":"Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model cooperation in Particle Swarm Optimization\",\"authors\":\"M. Dub, A. Stefek\",\"doi\":\"10.1109/MECHATRONIKA.2014.7018270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores cooperation of different mathematical models in the same system if the Particle Swarm Optimization (PSO) method is used for system parameter identification. Four different realistic system mathematical models of the second order were used to create different state spaces of the agents' positions. All the experiments were evaluated in wide and narrow intervals around the fitness function global minimum with two different PSO method initial agents' setup. Better results can be seen in some special cases when comparing model cooperation to single model optimization.\",\"PeriodicalId\":430829,\"journal\":{\"name\":\"Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECHATRONIKA.2014.7018270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Conference on Mechatronics - Mechatronika 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECHATRONIKA.2014.7018270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了用粒子群优化(PSO)方法进行系统参数辨识时,不同数学模型在同一系统中的协同作用。利用四种不同的二阶现实系统数学模型,建立了不同的智能体位置状态空间。通过两种不同的PSO方法初始agent设置,在适应度函数全局最小值周围的宽区间和窄区间对所有实验进行评估。将模型协作与单模型优化进行比较,在某些特殊情况下可以看到更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model cooperation in Particle Swarm Optimization
This article explores cooperation of different mathematical models in the same system if the Particle Swarm Optimization (PSO) method is used for system parameter identification. Four different realistic system mathematical models of the second order were used to create different state spaces of the agents' positions. All the experiments were evaluated in wide and narrow intervals around the fitness function global minimum with two different PSO method initial agents' setup. Better results can be seen in some special cases when comparing model cooperation to single model optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信