标量、单子和类别

Dion Coumans, B. Jacobs
{"title":"标量、单子和类别","authors":"Dion Coumans, B. Jacobs","doi":"10.1093/acprof:oso/9780199646296.003.0007","DOIUrl":null,"url":null,"abstract":"This chapter describes interrelations between: (1) algebraic structure on sets of scalars, (2) properties of monads associated with such sets of scalars, and (3) structure in categories (esp. Lawvere theories) associated with these monads. These interrelations will be expressed in terms of \"triangles of adjunctions\", involving for instance various kinds of monoids (non-commutative, commutative, involutive) and semirings as scalars. It will be shown to which kind of monads and categories these algebraic structures correspond via adjunctions.","PeriodicalId":273067,"journal":{"name":"Quantum Physics and Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Scalars, Monads, and Categories\",\"authors\":\"Dion Coumans, B. Jacobs\",\"doi\":\"10.1093/acprof:oso/9780199646296.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter describes interrelations between: (1) algebraic structure on sets of scalars, (2) properties of monads associated with such sets of scalars, and (3) structure in categories (esp. Lawvere theories) associated with these monads. These interrelations will be expressed in terms of \\\"triangles of adjunctions\\\", involving for instance various kinds of monoids (non-commutative, commutative, involutive) and semirings as scalars. It will be shown to which kind of monads and categories these algebraic structures correspond via adjunctions.\",\"PeriodicalId\":273067,\"journal\":{\"name\":\"Quantum Physics and Linguistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Physics and Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/acprof:oso/9780199646296.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Physics and Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780199646296.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

本章描述了(1)标量集合上的代数结构,(2)与这些标量集合相关的单子的性质,以及(3)与这些单子相关的范畴结构(特别是Lawvere理论)之间的相互关系。这些相互关系将用“辅助三角形”来表示,例如涉及各种单群(非交换的,交换的,对合的)和作为标量的半环。它将显示这些代数结构通过辅词对应于哪一种单元和类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalars, Monads, and Categories
This chapter describes interrelations between: (1) algebraic structure on sets of scalars, (2) properties of monads associated with such sets of scalars, and (3) structure in categories (esp. Lawvere theories) associated with these monads. These interrelations will be expressed in terms of "triangles of adjunctions", involving for instance various kinds of monoids (non-commutative, commutative, involutive) and semirings as scalars. It will be shown to which kind of monads and categories these algebraic structures correspond via adjunctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信