玻璃态偶氮聚合物光致变形的纳米致动器

M. Saphiannikova, V. Toshchevikov, J. Ilnytskyi
{"title":"玻璃态偶氮聚合物光致变形的纳米致动器","authors":"M. Saphiannikova, V. Toshchevikov, J. Ilnytskyi","doi":"10.1117/12.2031775","DOIUrl":null,"url":null,"abstract":"We present the theoretical and computer simulation studies of photo-mechanics in glassy azo-oligomers. Angular distributions of chromophores in respect to the backbones obtained at different temperatures served as input into a theoretical expression for the striction stress, which was found to be positive for the structure under investigation. The light-induced reorientation of typical propeller-like structures is shown to be a microscopic reason of the sample elongation. The azo-propellers work as nanoscopic actuators which convert the light energy into material deformation. This finding opens a way for prediction of photomechanical properties of glassy azo-compounds directly from their chemical structure.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nanoscopic actuators in light-induced deformation of glassy azo-polymers\",\"authors\":\"M. Saphiannikova, V. Toshchevikov, J. Ilnytskyi\",\"doi\":\"10.1117/12.2031775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the theoretical and computer simulation studies of photo-mechanics in glassy azo-oligomers. Angular distributions of chromophores in respect to the backbones obtained at different temperatures served as input into a theoretical expression for the striction stress, which was found to be positive for the structure under investigation. The light-induced reorientation of typical propeller-like structures is shown to be a microscopic reason of the sample elongation. The azo-propellers work as nanoscopic actuators which convert the light energy into material deformation. This finding opens a way for prediction of photomechanical properties of glassy azo-compounds directly from their chemical structure.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2031775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2031775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了玻璃态偶氮低聚物的光力学理论和计算机模拟研究。在不同温度下获得的发色团相对于骨架的角分布作为理论表达式的输入,该表达式被发现对所研究的结构是积极的。典型的螺旋桨状结构的光诱导取向是试样伸长的微观原因。偶氮螺旋桨作为纳米级致动器,将光能转化为材料变形。这一发现为直接从化学结构预测玻璃态偶氮化合物的光化学性质开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoscopic actuators in light-induced deformation of glassy azo-polymers
We present the theoretical and computer simulation studies of photo-mechanics in glassy azo-oligomers. Angular distributions of chromophores in respect to the backbones obtained at different temperatures served as input into a theoretical expression for the striction stress, which was found to be positive for the structure under investigation. The light-induced reorientation of typical propeller-like structures is shown to be a microscopic reason of the sample elongation. The azo-propellers work as nanoscopic actuators which convert the light energy into material deformation. This finding opens a way for prediction of photomechanical properties of glassy azo-compounds directly from their chemical structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信