代数数的仿射变换

D. J. Jeffrey, Pratibha, K. Roach
{"title":"代数数的仿射变换","authors":"D. J. Jeffrey, Pratibha, K. Roach","doi":"10.1145/1073884.1073912","DOIUrl":null,"url":null,"abstract":"We consider algebraic numbers defined by univariate polynomials over the rationals. In the syntax of Maple, such numbers are expressed using the RootOf function. This paper defines a canonical form for RootOf with respect to affine transformations. The affine shifts of monic irreducible polynomials form a group, and the orbits of the polynomials can be used to define a canonical form. The canonical form of the polynomials then defines a canonical form for the corresponding algebraic numbers. Reducing any RootOf to its canonical form has the advantage that affine relations between algebraic numbers are readily identified. More generally, the reduction minimizes the number of algebraic numbers appearing in a computation, and also allows the Maple indexed RootOf to be used more easily.","PeriodicalId":311546,"journal":{"name":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Affine transformations of algebraic numbers\",\"authors\":\"D. J. Jeffrey, Pratibha, K. Roach\",\"doi\":\"10.1145/1073884.1073912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider algebraic numbers defined by univariate polynomials over the rationals. In the syntax of Maple, such numbers are expressed using the RootOf function. This paper defines a canonical form for RootOf with respect to affine transformations. The affine shifts of monic irreducible polynomials form a group, and the orbits of the polynomials can be used to define a canonical form. The canonical form of the polynomials then defines a canonical form for the corresponding algebraic numbers. Reducing any RootOf to its canonical form has the advantage that affine relations between algebraic numbers are readily identified. More generally, the reduction minimizes the number of algebraic numbers appearing in a computation, and also allows the Maple indexed RootOf to be used more easily.\",\"PeriodicalId\":311546,\"journal\":{\"name\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 international symposium on Symbolic and algebraic computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1073884.1073912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 international symposium on Symbolic and algebraic computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1073884.1073912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑由有理数上的单变量多项式定义的代数数。在Maple的语法中,这样的数字是用RootOf函数表示的。本文定义了关于仿射变换的根of的标准形式。一元不可约多项式的仿射位移构成一个群,多项式的轨道可以用来定义一个标准形式。然后多项式的标准形式定义了相应代数数的标准形式。将任何根归约为其标准形式的优点是代数数之间的仿射关系很容易识别。更一般地说,这种减少减少了计算中出现的代数数的数量,并且还允许更容易地使用Maple索引的RootOf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Affine transformations of algebraic numbers
We consider algebraic numbers defined by univariate polynomials over the rationals. In the syntax of Maple, such numbers are expressed using the RootOf function. This paper defines a canonical form for RootOf with respect to affine transformations. The affine shifts of monic irreducible polynomials form a group, and the orbits of the polynomials can be used to define a canonical form. The canonical form of the polynomials then defines a canonical form for the corresponding algebraic numbers. Reducing any RootOf to its canonical form has the advantage that affine relations between algebraic numbers are readily identified. More generally, the reduction minimizes the number of algebraic numbers appearing in a computation, and also allows the Maple indexed RootOf to be used more easily.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信