基于卷积神经网络的地面图像多标签构建函数分类

Shivangi Srivastava, John E. Vargas-Muñoz, David Swinkels, D. Tuia
{"title":"基于卷积神经网络的地面图像多标签构建函数分类","authors":"Shivangi Srivastava, John E. Vargas-Muñoz, David Swinkels, D. Tuia","doi":"10.1145/3281548.3281559","DOIUrl":null,"url":null,"abstract":"We approach the problem of multi building function classification for buildings from the city of Amsterdam using a collection of Google Street View (GSV) pictures acquired at multiple zoom levels (field of views, FoV) and the corresponding governmental census data per building. Since buildings can have multiple usages, we cast the problem as multilabel classification task. To do so, we trained a CNN model end-to-end with the task of predicting multiple co-occurring building function classes per building. We fuse the individual features of three FoVs by using volumetric stacking. Our proposed model outperforms baseline CNN models that use either single or multiple FoVs.","PeriodicalId":231184,"journal":{"name":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Multilabel Building Functions Classification from Ground Pictures using Convolutional Neural Networks\",\"authors\":\"Shivangi Srivastava, John E. Vargas-Muñoz, David Swinkels, D. Tuia\",\"doi\":\"10.1145/3281548.3281559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We approach the problem of multi building function classification for buildings from the city of Amsterdam using a collection of Google Street View (GSV) pictures acquired at multiple zoom levels (field of views, FoV) and the corresponding governmental census data per building. Since buildings can have multiple usages, we cast the problem as multilabel classification task. To do so, we trained a CNN model end-to-end with the task of predicting multiple co-occurring building function classes per building. We fuse the individual features of three FoVs by using volumetric stacking. Our proposed model outperforms baseline CNN models that use either single or multiple FoVs.\",\"PeriodicalId\":231184,\"journal\":{\"name\":\"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3281548.3281559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3281548.3281559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们使用多个缩放级别(视场,FoV)获取的谷歌街景(GSV)图片集和每个建筑物相应的政府普查数据来解决阿姆斯特丹市建筑物的多建筑功能分类问题。由于建筑物可以有多种用途,因此我们将问题转换为多标签分类任务。为此,我们训练了一个端到端的CNN模型,任务是预测每个建筑物的多个共同发生的建筑功能类别。我们通过体积叠加融合了三个fov的各个特征。我们提出的模型优于使用单个或多个fov的基线CNN模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilabel Building Functions Classification from Ground Pictures using Convolutional Neural Networks
We approach the problem of multi building function classification for buildings from the city of Amsterdam using a collection of Google Street View (GSV) pictures acquired at multiple zoom levels (field of views, FoV) and the corresponding governmental census data per building. Since buildings can have multiple usages, we cast the problem as multilabel classification task. To do so, we trained a CNN model end-to-end with the task of predicting multiple co-occurring building function classes per building. We fuse the individual features of three FoVs by using volumetric stacking. Our proposed model outperforms baseline CNN models that use either single or multiple FoVs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信