基于文本理论的海岸地貌面向对象分类

Sun Shutting, Li Jianqiang, Zou Bin
{"title":"基于文本理论的海岸地貌面向对象分类","authors":"Sun Shutting, Li Jianqiang, Zou Bin","doi":"10.1109/SIPROCESS.2016.7888228","DOIUrl":null,"url":null,"abstract":"This paper focus on classification of coastal landform. The study area is locate in QinZhou, Guangxi Zhuang Autonomous Region, China, using GF-1 image. In view of complex coastal landform, the current study firstly transforming RGB model to CIE LAB model, dividing image based on colour gradient, then conducting Gabor filtering and PCA transformation to develop texons and generating texton histogram. Finally, maximum likelihood classification is employed for classification. The study results demonstrate that classification accuracy has been improved due to the capacity of texton-based model in maintaining more image features, achieving variable decoupling, and reducing variable correlation.","PeriodicalId":142802,"journal":{"name":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object oriented classification of coastal landform based on texton theory\",\"authors\":\"Sun Shutting, Li Jianqiang, Zou Bin\",\"doi\":\"10.1109/SIPROCESS.2016.7888228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus on classification of coastal landform. The study area is locate in QinZhou, Guangxi Zhuang Autonomous Region, China, using GF-1 image. In view of complex coastal landform, the current study firstly transforming RGB model to CIE LAB model, dividing image based on colour gradient, then conducting Gabor filtering and PCA transformation to develop texons and generating texton histogram. Finally, maximum likelihood classification is employed for classification. The study results demonstrate that classification accuracy has been improved due to the capacity of texton-based model in maintaining more image features, achieving variable decoupling, and reducing variable correlation.\",\"PeriodicalId\":142802,\"journal\":{\"name\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Signal and Image Processing (ICSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPROCESS.2016.7888228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Signal and Image Processing (ICSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPROCESS.2016.7888228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究海岸地貌的分类。研究区域位于中国广西壮族自治区钦州,使用GF-1图像。针对复杂的海岸地貌,本研究首先将RGB模型转换为CIE LAB模型,基于颜色梯度对图像进行分割,然后进行Gabor滤波和PCA变换,开发texons,生成texons直方图。最后,采用最大似然分类进行分类。研究结果表明,基于文本的模型能够保持更多的图像特征,实现变量解耦,降低变量相关性,从而提高了分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object oriented classification of coastal landform based on texton theory
This paper focus on classification of coastal landform. The study area is locate in QinZhou, Guangxi Zhuang Autonomous Region, China, using GF-1 image. In view of complex coastal landform, the current study firstly transforming RGB model to CIE LAB model, dividing image based on colour gradient, then conducting Gabor filtering and PCA transformation to develop texons and generating texton histogram. Finally, maximum likelihood classification is employed for classification. The study results demonstrate that classification accuracy has been improved due to the capacity of texton-based model in maintaining more image features, achieving variable decoupling, and reducing variable correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信