利用因果图加强翻译以解决偶然计划问题

Ignasi Andrés, L. N. Barros
{"title":"利用因果图加强翻译以解决偶然计划问题","authors":"Ignasi Andrés, L. N. Barros","doi":"10.1109/BRACIS.2016.023","DOIUrl":null,"url":null,"abstract":"Planning with partial observation, an area called contingent planning, is a complex and challenging problem since it requires to keep track of belief states to search for a contingent plan of actions. Recent approaches considers the agent's knowledge about the world to compile a contingent planning problem into a full observable planning problem, described in an epistemic logic language, and then use an efficcient full observable planner to solve the translated problem. In this paper we use the concept of relevance and causality to propose a new translation based in a structure called Causal Graph that can improve the belief tracking task of contingent Planning problems described in a more general planning language, in particular problems envolving actions with uncertainty on its conditional effects.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using the Causal Graph to Enhance Translations to Solve Contingent Planning Problems\",\"authors\":\"Ignasi Andrés, L. N. Barros\",\"doi\":\"10.1109/BRACIS.2016.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planning with partial observation, an area called contingent planning, is a complex and challenging problem since it requires to keep track of belief states to search for a contingent plan of actions. Recent approaches considers the agent's knowledge about the world to compile a contingent planning problem into a full observable planning problem, described in an epistemic logic language, and then use an efficcient full observable planner to solve the translated problem. In this paper we use the concept of relevance and causality to propose a new translation based in a structure called Causal Graph that can improve the belief tracking task of contingent Planning problems described in a more general planning language, in particular problems envolving actions with uncertainty on its conditional effects.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于部分观察的计划,即所谓的应急计划,是一个复杂且具有挑战性的问题,因为它需要跟踪信念状态以寻找应急行动计划。最近的方法考虑智能体对世界的知识,将一个偶然规划问题编译成一个用认知逻辑语言描述的完全可观察规划问题,然后使用一个高效的完全可观察规划器来解决翻译后的问题。在本文中,我们使用相关性和因果关系的概念提出了一种基于因果图结构的新翻译,该翻译可以改进用更一般的规划语言描述的偶然规划问题的信念跟踪任务,特别是涉及具有条件影响不确定性的行动的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using the Causal Graph to Enhance Translations to Solve Contingent Planning Problems
Planning with partial observation, an area called contingent planning, is a complex and challenging problem since it requires to keep track of belief states to search for a contingent plan of actions. Recent approaches considers the agent's knowledge about the world to compile a contingent planning problem into a full observable planning problem, described in an epistemic logic language, and then use an efficcient full observable planner to solve the translated problem. In this paper we use the concept of relevance and causality to propose a new translation based in a structure called Causal Graph that can improve the belief tracking task of contingent Planning problems described in a more general planning language, in particular problems envolving actions with uncertainty on its conditional effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信