采用可逆计算实现故障安全

P. Bishop
{"title":"采用可逆计算实现故障安全","authors":"P. Bishop","doi":"10.1109/ISSRE.1997.630863","DOIUrl":null,"url":null,"abstract":"This paper describes a fail-safe design approach that can be used to achieve a high level of fail-safety with conventional computing equipment which may contain design flaws. The method is based on the well-established concept of reversible computing. Conventional programs destroy information and hence cannot be reversed. However it is easy to define a virtual machine that preserves sufficient intermediate information to permit reversal. Any program implemented on this virtual machine is inherently reversible. The integrity of a calculation can therefore be checked by reversing back from the output values and checking for the equivalence of intermediate values and original input values. By using different machine instructions on the forward and reverse paths, errors in any single instruction execution can be revealed. Random corruptions in data values are also detected. An assessment of the performance of the reversible computer design for a simple reactor trip application indicates that it runs about ten times slower than a conventional software implementation and requires about 20 kilobytes of additional storage. The trials also show a fail-safe bias of better than 99.998% for random data corruptions, and it is argued that failures due to systematic flaws could achieve similar levels of fail-safe bias. Potential extensions and applications of the technique are discussed.","PeriodicalId":170184,"journal":{"name":"Proceedings The Eighth International Symposium on Software Reliability Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Using reversible computing to achieve fail-safety\",\"authors\":\"P. Bishop\",\"doi\":\"10.1109/ISSRE.1997.630863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a fail-safe design approach that can be used to achieve a high level of fail-safety with conventional computing equipment which may contain design flaws. The method is based on the well-established concept of reversible computing. Conventional programs destroy information and hence cannot be reversed. However it is easy to define a virtual machine that preserves sufficient intermediate information to permit reversal. Any program implemented on this virtual machine is inherently reversible. The integrity of a calculation can therefore be checked by reversing back from the output values and checking for the equivalence of intermediate values and original input values. By using different machine instructions on the forward and reverse paths, errors in any single instruction execution can be revealed. Random corruptions in data values are also detected. An assessment of the performance of the reversible computer design for a simple reactor trip application indicates that it runs about ten times slower than a conventional software implementation and requires about 20 kilobytes of additional storage. The trials also show a fail-safe bias of better than 99.998% for random data corruptions, and it is argued that failures due to systematic flaws could achieve similar levels of fail-safe bias. Potential extensions and applications of the technique are discussed.\",\"PeriodicalId\":170184,\"journal\":{\"name\":\"Proceedings The Eighth International Symposium on Software Reliability Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings The Eighth International Symposium on Software Reliability Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.1997.630863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings The Eighth International Symposium on Software Reliability Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.1997.630863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文描述了一种故障安全设计方法,该方法可用于实现可能包含设计缺陷的传统计算设备的高水平故障安全。该方法基于公认的可逆计算概念。传统程序会破坏信息,因此无法逆转。然而,定义一个保留足够的中间信息以允许反转的虚拟机是很容易的。在这个虚拟机上实现的任何程序本质上都是可逆的。因此,可以通过从输出值返回并检查中间值和原始输入值是否相等来检查计算的完整性。通过在正向和反向路径上使用不同的机器指令,可以显示任何单个指令执行中的错误。还可以检测到数据值中的随机损坏。对一个简单的反应堆跳闸应用的可逆计算机设计的性能评估表明,它的运行速度比传统的软件实现要慢10倍,并且需要大约20kb的额外存储空间。试验还显示,对于随机数据损坏,故障安全偏差优于99.998%,并且有人认为,由于系统缺陷导致的故障可能达到类似水平的故障安全偏差。讨论了该技术的潜在扩展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using reversible computing to achieve fail-safety
This paper describes a fail-safe design approach that can be used to achieve a high level of fail-safety with conventional computing equipment which may contain design flaws. The method is based on the well-established concept of reversible computing. Conventional programs destroy information and hence cannot be reversed. However it is easy to define a virtual machine that preserves sufficient intermediate information to permit reversal. Any program implemented on this virtual machine is inherently reversible. The integrity of a calculation can therefore be checked by reversing back from the output values and checking for the equivalence of intermediate values and original input values. By using different machine instructions on the forward and reverse paths, errors in any single instruction execution can be revealed. Random corruptions in data values are also detected. An assessment of the performance of the reversible computer design for a simple reactor trip application indicates that it runs about ten times slower than a conventional software implementation and requires about 20 kilobytes of additional storage. The trials also show a fail-safe bias of better than 99.998% for random data corruptions, and it is argued that failures due to systematic flaws could achieve similar levels of fail-safe bias. Potential extensions and applications of the technique are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信