为物联网系统启用数据驱动管道的基于边缘的框架

E. G. Renart, Daniel Balouek-Thomert, M. Parashar
{"title":"为物联网系统启用数据驱动管道的基于边缘的框架","authors":"E. G. Renart, Daniel Balouek-Thomert, M. Parashar","doi":"10.1109/IPDPSW.2019.00146","DOIUrl":null,"url":null,"abstract":"Due to the proliferation of the Internet of Things (IoT) paradigm, the number of devices connected to the Internet is growing. These devices are generating unprecedented amounts of data at the edges of the infrastructure. Although the generated data provides great potential, identifying and processing relevant data points hidden in streams of unimportant data, and doing this in near real time, remains a significant challenge. Existing stream processing platforms require the data to be transported to the cloud for processing, resulting in latencies that can prevent timely decision making or may reduce the amount of data processed. To tackle this problem, we designed an IoT Edge Framework, called R-Pulsar, that extends cloud capabilities to local devices and provides a programming model for deciding what, when, and where data get collected and processed. In this paper, we discuss motivating use cases and the architectural design of R-Pulsar. We have deployed and tested R-Pulsar on embedded devices (Raspberry Pi and Android phone) and present an experimental evaluation that demonstrates that R-Pulsar can enable timely data analytics by effectively leveraging edge and cloud resources.","PeriodicalId":292054,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An Edge-Based Framework for Enabling Data-Driven Pipelines for IoT Systems\",\"authors\":\"E. G. Renart, Daniel Balouek-Thomert, M. Parashar\",\"doi\":\"10.1109/IPDPSW.2019.00146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the proliferation of the Internet of Things (IoT) paradigm, the number of devices connected to the Internet is growing. These devices are generating unprecedented amounts of data at the edges of the infrastructure. Although the generated data provides great potential, identifying and processing relevant data points hidden in streams of unimportant data, and doing this in near real time, remains a significant challenge. Existing stream processing platforms require the data to be transported to the cloud for processing, resulting in latencies that can prevent timely decision making or may reduce the amount of data processed. To tackle this problem, we designed an IoT Edge Framework, called R-Pulsar, that extends cloud capabilities to local devices and provides a programming model for deciding what, when, and where data get collected and processed. In this paper, we discuss motivating use cases and the architectural design of R-Pulsar. We have deployed and tested R-Pulsar on embedded devices (Raspberry Pi and Android phone) and present an experimental evaluation that demonstrates that R-Pulsar can enable timely data analytics by effectively leveraging edge and cloud resources.\",\"PeriodicalId\":292054,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPSW.2019.00146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2019.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于物联网(IoT)范式的扩散,连接到互联网的设备数量正在增长。这些设备正在基础设施的边缘产生前所未有的大量数据。尽管生成的数据提供了巨大的潜力,识别和处理隐藏在不重要数据流中的相关数据点,并在接近实时的情况下完成这一工作,仍然是一个重大挑战。现有的流处理平台需要将数据传输到云端进行处理,这会导致延迟,从而无法及时做出决策或可能减少处理的数据量。为了解决这个问题,我们设计了一个物联网边缘框架,称为R-Pulsar,它将云功能扩展到本地设备,并提供了一个编程模型,用于决定收集和处理数据的内容、时间和地点。在本文中,我们讨论了r -脉冲星的激励用例和架构设计。我们已经在嵌入式设备(树莓派和安卓手机)上部署和测试了R-Pulsar,并提出了一个实验评估,证明R-Pulsar可以通过有效利用边缘和云资源来实现及时的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Edge-Based Framework for Enabling Data-Driven Pipelines for IoT Systems
Due to the proliferation of the Internet of Things (IoT) paradigm, the number of devices connected to the Internet is growing. These devices are generating unprecedented amounts of data at the edges of the infrastructure. Although the generated data provides great potential, identifying and processing relevant data points hidden in streams of unimportant data, and doing this in near real time, remains a significant challenge. Existing stream processing platforms require the data to be transported to the cloud for processing, resulting in latencies that can prevent timely decision making or may reduce the amount of data processed. To tackle this problem, we designed an IoT Edge Framework, called R-Pulsar, that extends cloud capabilities to local devices and provides a programming model for deciding what, when, and where data get collected and processed. In this paper, we discuss motivating use cases and the architectural design of R-Pulsar. We have deployed and tested R-Pulsar on embedded devices (Raspberry Pi and Android phone) and present an experimental evaluation that demonstrates that R-Pulsar can enable timely data analytics by effectively leveraging edge and cloud resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信