{"title":"极值原理","authors":"R. Swendsen","doi":"10.1093/oso/9780198853237.003.0015","DOIUrl":null,"url":null,"abstract":"This chapter derives the energy minimum principle from the entropy maximum principle. It postulates and consider the consequences of extensivity. From this are further derived minimum principles for the Helmholtz free energy, enthalpy, and Gibbs free energy. Because of its importance in engineering, exergy is also introduced, and the exergy minimum principle is justified. Analogously to these minimum principles, maximum principles can be derived for the Massieu functions from the entropy maximum principle. For the analysis of the entropy maximum principle, we isolated a composite system and released an internal constraint. Since the composite system was isolated, its total energy remained constant. The composite system went to the most probable macroscopic state after release of the internal constraint, and the total entropy went to its maximum.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremum Principles\",\"authors\":\"R. Swendsen\",\"doi\":\"10.1093/oso/9780198853237.003.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter derives the energy minimum principle from the entropy maximum principle. It postulates and consider the consequences of extensivity. From this are further derived minimum principles for the Helmholtz free energy, enthalpy, and Gibbs free energy. Because of its importance in engineering, exergy is also introduced, and the exergy minimum principle is justified. Analogously to these minimum principles, maximum principles can be derived for the Massieu functions from the entropy maximum principle. For the analysis of the entropy maximum principle, we isolated a composite system and released an internal constraint. Since the composite system was isolated, its total energy remained constant. The composite system went to the most probable macroscopic state after release of the internal constraint, and the total entropy went to its maximum.\",\"PeriodicalId\":102491,\"journal\":{\"name\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198853237.003.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198853237.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter derives the energy minimum principle from the entropy maximum principle. It postulates and consider the consequences of extensivity. From this are further derived minimum principles for the Helmholtz free energy, enthalpy, and Gibbs free energy. Because of its importance in engineering, exergy is also introduced, and the exergy minimum principle is justified. Analogously to these minimum principles, maximum principles can be derived for the Massieu functions from the entropy maximum principle. For the analysis of the entropy maximum principle, we isolated a composite system and released an internal constraint. Since the composite system was isolated, its total energy remained constant. The composite system went to the most probable macroscopic state after release of the internal constraint, and the total entropy went to its maximum.