{"title":"用不可见光子进行光通信","authors":"Suhail Zubairy","doi":"10.1364/QIM.2013.T4B.1","DOIUrl":null,"url":null,"abstract":"It has always been a self-evident and obvious feature of any kind of communication that there should be an exchange of objects like photons or electrons between the sender and the receiver to convey any information. In this chapter a protocol is presented in which information is transmitted between a sender and receiver with no particles in the transmission channel. The basic building block of this counterfactual communication protocol, the Mach–Zehnder interferometer, is discussed. The concept of interaction-free measurement is also introduced.","PeriodicalId":175266,"journal":{"name":"Quantum Mechanics for Beginners","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optical Communication with Invisible Photons\",\"authors\":\"Suhail Zubairy\",\"doi\":\"10.1364/QIM.2013.T4B.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has always been a self-evident and obvious feature of any kind of communication that there should be an exchange of objects like photons or electrons between the sender and the receiver to convey any information. In this chapter a protocol is presented in which information is transmitted between a sender and receiver with no particles in the transmission channel. The basic building block of this counterfactual communication protocol, the Mach–Zehnder interferometer, is discussed. The concept of interaction-free measurement is also introduced.\",\"PeriodicalId\":175266,\"journal\":{\"name\":\"Quantum Mechanics for Beginners\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Mechanics for Beginners\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/QIM.2013.T4B.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Mechanics for Beginners","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/QIM.2013.T4B.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
It has always been a self-evident and obvious feature of any kind of communication that there should be an exchange of objects like photons or electrons between the sender and the receiver to convey any information. In this chapter a protocol is presented in which information is transmitted between a sender and receiver with no particles in the transmission channel. The basic building block of this counterfactual communication protocol, the Mach–Zehnder interferometer, is discussed. The concept of interaction-free measurement is also introduced.