半结构化文本的广义模板匹配

G. Nagy
{"title":"半结构化文本的广义模板匹配","authors":"G. Nagy","doi":"10.1145/3476887.3476895","DOIUrl":null,"url":null,"abstract":"Conventional template matching for named entity recognition on book-length text strings is generalized by allowing search phrases to capture distant tokens. Combined with word-type tagging and format variants (alternative name/date formats), a few initial templates (class—search-phrase—extract-phrase triples) can label most of the significant tokens. The program then uses its book-length statistics of tag-label associations to suggest candidate text for further template construction. The method serves as a preprocessor for error-free extraction of semantic relations from text obeying explicit semi-structure constraints. On three sample books of genealogical records, an F-measure of over 0.99 was achieved with less than 3 hours’ user time on each book.","PeriodicalId":166776,"journal":{"name":"The 6th International Workshop on Historical Document Imaging and Processing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Template Matching for Semi-structured Text\",\"authors\":\"G. Nagy\",\"doi\":\"10.1145/3476887.3476895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional template matching for named entity recognition on book-length text strings is generalized by allowing search phrases to capture distant tokens. Combined with word-type tagging and format variants (alternative name/date formats), a few initial templates (class—search-phrase—extract-phrase triples) can label most of the significant tokens. The program then uses its book-length statistics of tag-label associations to suggest candidate text for further template construction. The method serves as a preprocessor for error-free extraction of semantic relations from text obeying explicit semi-structure constraints. On three sample books of genealogical records, an F-measure of over 0.99 was achieved with less than 3 hours’ user time on each book.\",\"PeriodicalId\":166776,\"journal\":{\"name\":\"The 6th International Workshop on Historical Document Imaging and Processing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 6th International Workshop on Historical Document Imaging and Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476887.3476895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 6th International Workshop on Historical Document Imaging and Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476887.3476895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过允许搜索短语捕获远程标记,对书本长度文本字符串上命名实体识别的传统模板匹配进行了推广。结合单词类型标记和格式变体(备选名称/日期格式),几个初始模板(类-搜索-短语-提取-短语三元组)可以标记大多数重要的标记。然后,该程序使用其标签-标签关联的书籍长度统计数据来建议候选文本,以便进一步构建模板。该方法可以作为一个预处理程序,从遵循明确的半结构约束的文本中无错误地提取语义关系。在三本家谱样书中,用户在每本书上的时间少于3小时,f测量值超过0.99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Template Matching for Semi-structured Text
Conventional template matching for named entity recognition on book-length text strings is generalized by allowing search phrases to capture distant tokens. Combined with word-type tagging and format variants (alternative name/date formats), a few initial templates (class—search-phrase—extract-phrase triples) can label most of the significant tokens. The program then uses its book-length statistics of tag-label associations to suggest candidate text for further template construction. The method serves as a preprocessor for error-free extraction of semantic relations from text obeying explicit semi-structure constraints. On three sample books of genealogical records, an F-measure of over 0.99 was achieved with less than 3 hours’ user time on each book.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信