基于叙事学的故事情节提取框架

Piek Vossen, Tommaso Caselli, R. Segers
{"title":"基于叙事学的故事情节提取框架","authors":"Piek Vossen, Tommaso Caselli, R. Segers","doi":"10.1017/9781108854221.008","DOIUrl":null,"url":null,"abstract":". Stories are a pervasive phenomenon of human life. They also represent a cognitive tool to understand and make sense of the world and of its happenings. In this contribution we describe a narratology-based framework for modeling stories as a combination of different data structures and to automatically extract them from news articles. We introduce a distinction among three data structures (timelines, causelines, and storylines) that capture different narratological dimensions, respectively chronological ordering, causal connections, and plot structure. We developed the Circumstantial Event Ontology (CEO) for modeling (implicit) circumstantial relations as well as explicit causal relations and create two benchmark corpora: ECB + / CEO, for causelines, and the Event Storyline Corpus (ESC), for storylines. To test our framework and the difficulty in automatically extract causelines and storylines, we develop a series of reasonable baseline systems.","PeriodicalId":170332,"journal":{"name":"Computational Analysis of Storylines","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Narratology-Based Framework for Storyline Extraction\",\"authors\":\"Piek Vossen, Tommaso Caselli, R. Segers\",\"doi\":\"10.1017/9781108854221.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Stories are a pervasive phenomenon of human life. They also represent a cognitive tool to understand and make sense of the world and of its happenings. In this contribution we describe a narratology-based framework for modeling stories as a combination of different data structures and to automatically extract them from news articles. We introduce a distinction among three data structures (timelines, causelines, and storylines) that capture different narratological dimensions, respectively chronological ordering, causal connections, and plot structure. We developed the Circumstantial Event Ontology (CEO) for modeling (implicit) circumstantial relations as well as explicit causal relations and create two benchmark corpora: ECB + / CEO, for causelines, and the Event Storyline Corpus (ESC), for storylines. To test our framework and the difficulty in automatically extract causelines and storylines, we develop a series of reasonable baseline systems.\",\"PeriodicalId\":170332,\"journal\":{\"name\":\"Computational Analysis of Storylines\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Analysis of Storylines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108854221.008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Analysis of Storylines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108854221.008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 故事是人类生活中普遍存在的现象。它们也代表了一种认知工具,用来理解和理解世界及其发生的事情。在这篇文章中,我们描述了一个基于叙事学的框架,用于将不同的数据结构组合在一起,并自动从新闻文章中提取它们。我们介绍了三种数据结构(时间线、因果线和故事线)之间的区别,它们分别捕捉不同的叙事维度,分别是时间顺序、因果关系和情节结构。我们开发了环境事件本体(CEO),用于(隐式)环境关系和明确因果关系的建模,并创建了两个基准语料库:ECB + / CEO,用于因果关系,以及事件故事情节语料库(ESC),用于故事情节。为了测试我们的框架以及自动提取因果线和故事线的难度,我们开发了一系列合理的基线系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Narratology-Based Framework for Storyline Extraction
. Stories are a pervasive phenomenon of human life. They also represent a cognitive tool to understand and make sense of the world and of its happenings. In this contribution we describe a narratology-based framework for modeling stories as a combination of different data structures and to automatically extract them from news articles. We introduce a distinction among three data structures (timelines, causelines, and storylines) that capture different narratological dimensions, respectively chronological ordering, causal connections, and plot structure. We developed the Circumstantial Event Ontology (CEO) for modeling (implicit) circumstantial relations as well as explicit causal relations and create two benchmark corpora: ECB + / CEO, for causelines, and the Event Storyline Corpus (ESC), for storylines. To test our framework and the difficulty in automatically extract causelines and storylines, we develop a series of reasonable baseline systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信