家庭视频的自动分割

Y. Zhai, M. Shah
{"title":"家庭视频的自动分割","authors":"Y. Zhai, M. Shah","doi":"10.1109/ICME.2005.1521347","DOIUrl":null,"url":null,"abstract":"Temporal video segmentation is one of the fundamental and essential tasks in video processing, understanding and management. In this paper, we present an automatic method for segmenting the home videos into temporal logical units. We have developed a statistical framework using Markov chain Monte Carlo (MCMC) technique. The temporal scene boundaries are detected by maximizing the posterior probability of the model parameters. The model parameters contain the number of the scenes and the boundary locations of the scenes. The proposed method has been demonstrated on several home videos, and high accuracy has been obtained","PeriodicalId":244360,"journal":{"name":"2005 IEEE International Conference on Multimedia and Expo","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Automatic Segmentation of Home Videos\",\"authors\":\"Y. Zhai, M. Shah\",\"doi\":\"10.1109/ICME.2005.1521347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal video segmentation is one of the fundamental and essential tasks in video processing, understanding and management. In this paper, we present an automatic method for segmenting the home videos into temporal logical units. We have developed a statistical framework using Markov chain Monte Carlo (MCMC) technique. The temporal scene boundaries are detected by maximizing the posterior probability of the model parameters. The model parameters contain the number of the scenes and the boundary locations of the scenes. The proposed method has been demonstrated on several home videos, and high accuracy has been obtained\",\"PeriodicalId\":244360,\"journal\":{\"name\":\"2005 IEEE International Conference on Multimedia and Expo\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2005.1521347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2005.1521347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

时间视频分割是视频处理、理解和管理的基本任务之一。在本文中,我们提出了一种将家庭视频自动分割成时间逻辑单元的方法。我们开发了一个统计框架使用马尔可夫链蒙特卡罗(MCMC)技术。通过最大化模型参数的后验概率来检测时间场景边界。模型参数包含场景的个数和场景的边界位置。该方法已在多个家庭视频中进行了验证,取得了较高的精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Segmentation of Home Videos
Temporal video segmentation is one of the fundamental and essential tasks in video processing, understanding and management. In this paper, we present an automatic method for segmenting the home videos into temporal logical units. We have developed a statistical framework using Markov chain Monte Carlo (MCMC) technique. The temporal scene boundaries are detected by maximizing the posterior probability of the model parameters. The model parameters contain the number of the scenes and the boundary locations of the scenes. The proposed method has been demonstrated on several home videos, and high accuracy has been obtained
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信