如何校准敌人的能力?反自治系统的逆滤波

V. Krishnamurthy, M. Rangaswamy
{"title":"如何校准敌人的能力?反自治系统的逆滤波","authors":"V. Krishnamurthy, M. Rangaswamy","doi":"10.23919/fusion43075.2019.9011232","DOIUrl":null,"url":null,"abstract":"We consider the following adversarial Bayesian signal processing problem involving “us” and the “enemy”: an enemy observes our state in noise; updates its posterior distribution of the state and then chooses an action based on this posterior. Given knowledge of “our” state and sequence of enemy's actions observed in noise, we consider two problems: (i) How can the enemy's posterior distribution be estimated? Estimating the posterior is an inverse filtering problem involving a random measure - we formulate and solve several versions of this problem in a Bayesian setting. (ii) How can the enemy's observation likelihood be estimated? This tells us how accurate the enemy's sensors are. We compute the maximum likelihood estimator for the enemy's observation likelihood given our measurements of the enemy's actions where the enemy's actions are in response to estimating our state. The above questions are motivated by the design of counter-autonomous systems: given measurements of the actions of a sophisticated autonomous enemy, how can a counter-autonomous system estimate the underlying belief of the enemy, predict future actions and therefore guard against these actions.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"How to Calibrate your Enemy's Capabilities? Inverse Filtering for Counter-Autonomous Systems\",\"authors\":\"V. Krishnamurthy, M. Rangaswamy\",\"doi\":\"10.23919/fusion43075.2019.9011232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following adversarial Bayesian signal processing problem involving “us” and the “enemy”: an enemy observes our state in noise; updates its posterior distribution of the state and then chooses an action based on this posterior. Given knowledge of “our” state and sequence of enemy's actions observed in noise, we consider two problems: (i) How can the enemy's posterior distribution be estimated? Estimating the posterior is an inverse filtering problem involving a random measure - we formulate and solve several versions of this problem in a Bayesian setting. (ii) How can the enemy's observation likelihood be estimated? This tells us how accurate the enemy's sensors are. We compute the maximum likelihood estimator for the enemy's observation likelihood given our measurements of the enemy's actions where the enemy's actions are in response to estimating our state. The above questions are motivated by the design of counter-autonomous systems: given measurements of the actions of a sophisticated autonomous enemy, how can a counter-autonomous system estimate the underlying belief of the enemy, predict future actions and therefore guard against these actions.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑以下涉及“我们”和“敌人”的对抗性贝叶斯信号处理问题:敌人在噪声中观察我们的状态;更新状态的后验分布,然后根据这个后验选择一个动作。给定“我们的”状态的知识和在噪声中观察到的敌人的行动序列,我们考虑两个问题:(i)如何估计敌人的后验分布?估计后验是一个涉及随机度量的反滤波问题-我们在贝叶斯设置中制定并解决了这个问题的几个版本。(二)如何估计敌人的观察可能性?这告诉我们敌人的传感器有多精确。我们计算敌人的观察可能性的最大似然估计,根据我们对敌人行动的测量,敌人的行动是对我们状态的估计的响应。上述问题是由反自主系统的设计引起的:给定一个复杂的自主敌人的行动测量,一个反自主系统如何估计敌人的潜在信念,预测未来的行动,从而防范这些行动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Calibrate your Enemy's Capabilities? Inverse Filtering for Counter-Autonomous Systems
We consider the following adversarial Bayesian signal processing problem involving “us” and the “enemy”: an enemy observes our state in noise; updates its posterior distribution of the state and then chooses an action based on this posterior. Given knowledge of “our” state and sequence of enemy's actions observed in noise, we consider two problems: (i) How can the enemy's posterior distribution be estimated? Estimating the posterior is an inverse filtering problem involving a random measure - we formulate and solve several versions of this problem in a Bayesian setting. (ii) How can the enemy's observation likelihood be estimated? This tells us how accurate the enemy's sensors are. We compute the maximum likelihood estimator for the enemy's observation likelihood given our measurements of the enemy's actions where the enemy's actions are in response to estimating our state. The above questions are motivated by the design of counter-autonomous systems: given measurements of the actions of a sophisticated autonomous enemy, how can a counter-autonomous system estimate the underlying belief of the enemy, predict future actions and therefore guard against these actions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信