半时空功能磁共振大脑解码

M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani
{"title":"半时空功能磁共振大脑解码","authors":"M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani","doi":"10.1109/PRNI.2013.54","DOIUrl":null,"url":null,"abstract":"Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-spatiotemporal fMRI Brain Decoding\",\"authors\":\"M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani\",\"doi\":\"10.1109/PRNI.2013.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大脑的功能行为可以用功能性磁共振成像(fMRI)来捕捉。尽管fMRI信号具有时间和空间结构,但大多数研究在推断心理状态(大脑解码)时忽略了时间结构。这有两个主要的副作用:由于模型中缺乏时间信息,导致大脑解码性能下降;无法提供时间可解释性。很少有研究针对这个问题,但由于与高特征实例比相关的负担挑战,成功的研究较少。在这项研究中,提出了一种新的模型,用于在保持低特征实例比的同时融合时间信息。实验结果表明,该模型与现有方法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-spatiotemporal fMRI Brain Decoding
Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信