M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani
{"title":"半时空功能磁共振大脑解码","authors":"M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani","doi":"10.1109/PRNI.2013.54","DOIUrl":null,"url":null,"abstract":"Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.","PeriodicalId":144007,"journal":{"name":"2013 International Workshop on Pattern Recognition in Neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semi-spatiotemporal fMRI Brain Decoding\",\"authors\":\"M. H. Kefayati, H. Sheikhzadeh, H. Rabiee, A. Soltani-Farani\",\"doi\":\"10.1109/PRNI.2013.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.\",\"PeriodicalId\":144007,\"journal\":{\"name\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Pattern Recognition in Neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2013.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Pattern Recognition in Neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2013.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is proposed. Experimental results show the effectiveness of the model compared to recent state of the art approaches.