Philipp Bär, Jasper Nalbach, Erika 'Abrah'am, Christopher W. Brown
{"title":"利用圆柱代数覆盖中的严格约束","authors":"Philipp Bär, Jasper Nalbach, Erika 'Abrah'am, Christopher W. Brown","doi":"10.48550/arXiv.2306.16757","DOIUrl":null,"url":null,"abstract":"One of the few available complete methods for checking the satisfiability of sets of polynomial constraints over the reals is the cylindrical algebraic covering (CAlC) method. In this paper, we propose an extension for this method to exploit the strictness of input constraints for reducing the computational effort. We illustrate the concepts on a multidimensional example and provide experimental results to evaluate the usefulness of our proposed extension.","PeriodicalId":114068,"journal":{"name":"International Workshop on Satisfiability Modulo Theories","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting Strict Constraints in the Cylindrical Algebraic Covering\",\"authors\":\"Philipp Bär, Jasper Nalbach, Erika 'Abrah'am, Christopher W. Brown\",\"doi\":\"10.48550/arXiv.2306.16757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the few available complete methods for checking the satisfiability of sets of polynomial constraints over the reals is the cylindrical algebraic covering (CAlC) method. In this paper, we propose an extension for this method to exploit the strictness of input constraints for reducing the computational effort. We illustrate the concepts on a multidimensional example and provide experimental results to evaluate the usefulness of our proposed extension.\",\"PeriodicalId\":114068,\"journal\":{\"name\":\"International Workshop on Satisfiability Modulo Theories\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Satisfiability Modulo Theories\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.16757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Satisfiability Modulo Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.16757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting Strict Constraints in the Cylindrical Algebraic Covering
One of the few available complete methods for checking the satisfiability of sets of polynomial constraints over the reals is the cylindrical algebraic covering (CAlC) method. In this paper, we propose an extension for this method to exploit the strictness of input constraints for reducing the computational effort. We illustrate the concepts on a multidimensional example and provide experimental results to evaluate the usefulness of our proposed extension.