一种低成本的卫星图像数据标注服务

Fitri Andri Astuti, I. B. Nugraha
{"title":"一种低成本的卫星图像数据标注服务","authors":"Fitri Andri Astuti, I. B. Nugraha","doi":"10.1109/ICITSI56531.2022.9970926","DOIUrl":null,"url":null,"abstract":"Satellite imagery data can be used to detect areas of built-up land. Various satellite image data processing platforms have emerged in line with the sophistication of technological developments. However, from these many platforms, there are code, access, and storage limitations. So, to make a good dataset, correction, and collaboration between users are needed. A good dataset will produce a good model. Therefore, in this study, we present the software architecture of data labeling services. The proposed research method consists of data management using MongoDB, data labeling service backend using FastAPI, and frontend using Flask and LeafletJS. Furthermore, we present some empirical results of this study regarding usability, performance, cost, and comparative analysis of our proposed low-cost satellite imagery data labeling service.","PeriodicalId":439918,"journal":{"name":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low-Cost Labeling Service for Satellite Imagery Data\",\"authors\":\"Fitri Andri Astuti, I. B. Nugraha\",\"doi\":\"10.1109/ICITSI56531.2022.9970926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite imagery data can be used to detect areas of built-up land. Various satellite image data processing platforms have emerged in line with the sophistication of technological developments. However, from these many platforms, there are code, access, and storage limitations. So, to make a good dataset, correction, and collaboration between users are needed. A good dataset will produce a good model. Therefore, in this study, we present the software architecture of data labeling services. The proposed research method consists of data management using MongoDB, data labeling service backend using FastAPI, and frontend using Flask and LeafletJS. Furthermore, we present some empirical results of this study regarding usability, performance, cost, and comparative analysis of our proposed low-cost satellite imagery data labeling service.\",\"PeriodicalId\":439918,\"journal\":{\"name\":\"2022 International Conference on Information Technology Systems and Innovation (ICITSI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Information Technology Systems and Innovation (ICITSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITSI56531.2022.9970926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITSI56531.2022.9970926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星图像数据可用于探测建筑用地区域。随着技术的发展,各种卫星图像数据处理平台应运而生。然而,在这么多平台上,存在代码、访问和存储限制。因此,要制作一个好的数据集,需要用户之间的校正和协作。一个好的数据集会产生一个好的模型。因此,在本研究中,我们提出了数据标注服务的软件架构。本文提出的研究方法包括使用MongoDB的数据管理,使用FastAPI的数据标签服务后端,以及使用Flask和LeafletJS的前端。此外,我们还介绍了本研究关于可用性、性能、成本的一些实证结果,并对我们提出的低成本卫星图像数据标记服务进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Low-Cost Labeling Service for Satellite Imagery Data
Satellite imagery data can be used to detect areas of built-up land. Various satellite image data processing platforms have emerged in line with the sophistication of technological developments. However, from these many platforms, there are code, access, and storage limitations. So, to make a good dataset, correction, and collaboration between users are needed. A good dataset will produce a good model. Therefore, in this study, we present the software architecture of data labeling services. The proposed research method consists of data management using MongoDB, data labeling service backend using FastAPI, and frontend using Flask and LeafletJS. Furthermore, we present some empirical results of this study regarding usability, performance, cost, and comparative analysis of our proposed low-cost satellite imagery data labeling service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信