{"title":"基于深度神经网络的手写数字识别","authors":"Yawei Hou, Huailin Zhao","doi":"10.1109/ICIIBMS.2017.8279710","DOIUrl":null,"url":null,"abstract":"Neural network and depth learning have been widely used in the field of image processing. Good recognition results are often required for complex network models. But the complex network model makes training difficult and takes a long time. In order to obtain a higher recognition rate with a simple model, the BP neural network and the convolutional neural network are studied separately and verified on the MNIST data set. In order to improve the recognition results further, a combined depth network is proposed and validated on the MNIST dataset. The experimental results show that the recognition effect of the combined depth network is obviously better than that of a single network. A more accurate recognition result is achieved by the combined network.","PeriodicalId":122969,"journal":{"name":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Handwritten digit recognition based on depth neural network\",\"authors\":\"Yawei Hou, Huailin Zhao\",\"doi\":\"10.1109/ICIIBMS.2017.8279710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural network and depth learning have been widely used in the field of image processing. Good recognition results are often required for complex network models. But the complex network model makes training difficult and takes a long time. In order to obtain a higher recognition rate with a simple model, the BP neural network and the convolutional neural network are studied separately and verified on the MNIST data set. In order to improve the recognition results further, a combined depth network is proposed and validated on the MNIST dataset. The experimental results show that the recognition effect of the combined depth network is obviously better than that of a single network. A more accurate recognition result is achieved by the combined network.\",\"PeriodicalId\":122969,\"journal\":{\"name\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2017.8279710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2017.8279710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Handwritten digit recognition based on depth neural network
Neural network and depth learning have been widely used in the field of image processing. Good recognition results are often required for complex network models. But the complex network model makes training difficult and takes a long time. In order to obtain a higher recognition rate with a simple model, the BP neural network and the convolutional neural network are studied separately and verified on the MNIST data set. In order to improve the recognition results further, a combined depth network is proposed and validated on the MNIST dataset. The experimental results show that the recognition effect of the combined depth network is obviously better than that of a single network. A more accurate recognition result is achieved by the combined network.