跨语言情感分类的数据质量控制

Shoushan Li, Yunxia Xue, Zhongqing Wang, Sophia Yat-Mei Lee, Chu-Ren Huang
{"title":"跨语言情感分类的数据质量控制","authors":"Shoushan Li, Yunxia Xue, Zhongqing Wang, Sophia Yat-Mei Lee, Chu-Ren Huang","doi":"10.1109/IALP.2013.43","DOIUrl":null,"url":null,"abstract":"Cross-lingual sentiment classification aims to perform sentiment classification in a language (named as the target language) with the help of the resources from another language (named as the source language). Previous studies are prone to using all available data in the source language while using all data is observed to perform no better or even worse than using a partion of good data. In this paper, we propose a novel task called data quality controlling in the source language to select high quality samples from the source language. To tackle this task, we propose two kinds of data quality measurements: intra- and extra-quality measurements which are implemented with the certainty and similarity measurements respectively. The empirical studies demonstrate the effectiveness of the proposed approach to data quality controlling in the source language.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data Quality Controlling for Cross-Lingual Sentiment Classification\",\"authors\":\"Shoushan Li, Yunxia Xue, Zhongqing Wang, Sophia Yat-Mei Lee, Chu-Ren Huang\",\"doi\":\"10.1109/IALP.2013.43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-lingual sentiment classification aims to perform sentiment classification in a language (named as the target language) with the help of the resources from another language (named as the source language). Previous studies are prone to using all available data in the source language while using all data is observed to perform no better or even worse than using a partion of good data. In this paper, we propose a novel task called data quality controlling in the source language to select high quality samples from the source language. To tackle this task, we propose two kinds of data quality measurements: intra- and extra-quality measurements which are implemented with the certainty and similarity measurements respectively. The empirical studies demonstrate the effectiveness of the proposed approach to data quality controlling in the source language.\",\"PeriodicalId\":413833,\"journal\":{\"name\":\"2013 International Conference on Asian Language Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2013.43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

跨语言情感分类的目的是利用另一种语言(源语言)的资源对一种语言(目标语言)进行情感分类。以前的研究倾向于使用源语言中所有可用的数据,而使用所有数据被观察到的表现并不比使用一部分好的数据更好,甚至更差。在本文中,我们提出了一种新的任务,称为源语言数据质量控制,以从源语言中选择高质量的样本。为了解决这个问题,我们提出了两种数据质量度量:内部质量度量和外部质量度量,它们分别用确定性度量和相似性度量实现。实证研究证明了该方法对源语言数据质量控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Quality Controlling for Cross-Lingual Sentiment Classification
Cross-lingual sentiment classification aims to perform sentiment classification in a language (named as the target language) with the help of the resources from another language (named as the source language). Previous studies are prone to using all available data in the source language while using all data is observed to perform no better or even worse than using a partion of good data. In this paper, we propose a novel task called data quality controlling in the source language to select high quality samples from the source language. To tackle this task, we propose two kinds of data quality measurements: intra- and extra-quality measurements which are implemented with the certainty and similarity measurements respectively. The empirical studies demonstrate the effectiveness of the proposed approach to data quality controlling in the source language.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信