{"title":"基于分析模型的快速热感知固定轮廓平面规划方法","authors":"Jai-Ming Lin, Tai-Ting Chen, Yen-Fu Chang, Wei-Yi Chang, Ya-Ting Shyu, Yeong-Jar Chang, Juin-Ming Lu","doi":"10.1145/3240765.3240769","DOIUrl":null,"url":null,"abstract":"High temperature or temperature non-uniformity have become a serious threat to performance and reliability of highperformance integrated circuits (ICs). Thermal effect becomes a non-ignorable issue to circuit design or physical design. To estimate temperature accurately, the locations of modules have to be determined, which makes an efficient and effective thermal-aware floorplanning play a more important role. To resolve this problem, this paper proposes a differential nonlinear model which can approximate temperature and minimize wirelength at the same time during floorplanning. We also apply some techniques such a thermal-aware clustering or shrinking hot modules in the multi-level framework to further reduce temperature without inducing longer wirelength. The experimental results demonstrate that temperature and wirelength are greatly improved in our method compared to other works. More importantly, our runtime is quite fast and the fixed-outline constraint is also satisfied.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A Fast Thermal-Aware Fixed-Outline Floorplanning Methodology Based on Analytical Models\",\"authors\":\"Jai-Ming Lin, Tai-Ting Chen, Yen-Fu Chang, Wei-Yi Chang, Ya-Ting Shyu, Yeong-Jar Chang, Juin-Ming Lu\",\"doi\":\"10.1145/3240765.3240769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High temperature or temperature non-uniformity have become a serious threat to performance and reliability of highperformance integrated circuits (ICs). Thermal effect becomes a non-ignorable issue to circuit design or physical design. To estimate temperature accurately, the locations of modules have to be determined, which makes an efficient and effective thermal-aware floorplanning play a more important role. To resolve this problem, this paper proposes a differential nonlinear model which can approximate temperature and minimize wirelength at the same time during floorplanning. We also apply some techniques such a thermal-aware clustering or shrinking hot modules in the multi-level framework to further reduce temperature without inducing longer wirelength. The experimental results demonstrate that temperature and wirelength are greatly improved in our method compared to other works. More importantly, our runtime is quite fast and the fixed-outline constraint is also satisfied.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fast Thermal-Aware Fixed-Outline Floorplanning Methodology Based on Analytical Models
High temperature or temperature non-uniformity have become a serious threat to performance and reliability of highperformance integrated circuits (ICs). Thermal effect becomes a non-ignorable issue to circuit design or physical design. To estimate temperature accurately, the locations of modules have to be determined, which makes an efficient and effective thermal-aware floorplanning play a more important role. To resolve this problem, this paper proposes a differential nonlinear model which can approximate temperature and minimize wirelength at the same time during floorplanning. We also apply some techniques such a thermal-aware clustering or shrinking hot modules in the multi-level framework to further reduce temperature without inducing longer wirelength. The experimental results demonstrate that temperature and wirelength are greatly improved in our method compared to other works. More importantly, our runtime is quite fast and the fixed-outline constraint is also satisfied.