从垂直分布式数据库中挖掘高实用项目集

Bay Vo, Huy Nguyen, H. Le
{"title":"从垂直分布式数据库中挖掘高实用项目集","authors":"Bay Vo, Huy Nguyen, H. Le","doi":"10.1109/RIVF.2009.5174650","DOIUrl":null,"url":null,"abstract":"The utility based on itemsets mining approach has been discussed widely in recent years. There are many algorithms mining high utility itemsets (HUIs) by pruning candidates based on the estimated utility values, and based on the transaction-weighted utilization values. These algorithms aim to reduce search space. In this paper, we propose a method for HUIs from vertical distributed databases. This method does not integrate local databases in SlaverSites to MasterSite, and scan local database one time. Experiments show the run-time of this method is more efficient than that in the concentration database.","PeriodicalId":243397,"journal":{"name":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Mining High Utility Itemsets from Vertical Distributed Databases\",\"authors\":\"Bay Vo, Huy Nguyen, H. Le\",\"doi\":\"10.1109/RIVF.2009.5174650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utility based on itemsets mining approach has been discussed widely in recent years. There are many algorithms mining high utility itemsets (HUIs) by pruning candidates based on the estimated utility values, and based on the transaction-weighted utilization values. These algorithms aim to reduce search space. In this paper, we propose a method for HUIs from vertical distributed databases. This method does not integrate local databases in SlaverSites to MasterSite, and scan local database one time. Experiments show the run-time of this method is more efficient than that in the concentration database.\",\"PeriodicalId\":243397,\"journal\":{\"name\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE-RIVF International Conference on Computing and Communication Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2009.5174650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2009.5174650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于项集挖掘的实用方法近年来得到了广泛的讨论。有许多算法通过根据估计的效用值和基于事务加权的利用率值修剪候选项集来挖掘高效用项集。这些算法旨在减少搜索空间。在本文中,我们提出了一种垂直分布数据库中hui的方法。该方法不需要将SlaverSites中的本地数据库集成到MasterSite中,只需扫描一次本地数据库。实验表明,该方法的运行时间比在浓度数据库中的运行时间要快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining High Utility Itemsets from Vertical Distributed Databases
The utility based on itemsets mining approach has been discussed widely in recent years. There are many algorithms mining high utility itemsets (HUIs) by pruning candidates based on the estimated utility values, and based on the transaction-weighted utilization values. These algorithms aim to reduce search space. In this paper, we propose a method for HUIs from vertical distributed databases. This method does not integrate local databases in SlaverSites to MasterSite, and scan local database one time. Experiments show the run-time of this method is more efficient than that in the concentration database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信