{"title":"无限双曲Kazhdan群的16相关表示","authors":"P. Caprace","doi":"10.4171/LEM/64-3/4-2","DOIUrl":null,"url":null,"abstract":"We provide an explicit presentation of an infinite hyperbolic Kazhdan group with $4$ generators and $16$ relators of length at most $73$. That group acts properly and cocompactly on a hyperbolic triangle building of type $(3,4,4)$. We also point out a variation of the construction that yields examples of lattices in $\\tilde A_2$-buildings admitting non-Desarguesian residues of arbitrary prime power order.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A sixteen-relator presentation of an infinite hyperbolic Kazhdan group\",\"authors\":\"P. Caprace\",\"doi\":\"10.4171/LEM/64-3/4-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide an explicit presentation of an infinite hyperbolic Kazhdan group with $4$ generators and $16$ relators of length at most $73$. That group acts properly and cocompactly on a hyperbolic triangle building of type $(3,4,4)$. We also point out a variation of the construction that yields examples of lattices in $\\\\tilde A_2$-buildings admitting non-Desarguesian residues of arbitrary prime power order.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/64-3/4-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/64-3/4-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A sixteen-relator presentation of an infinite hyperbolic Kazhdan group
We provide an explicit presentation of an infinite hyperbolic Kazhdan group with $4$ generators and $16$ relators of length at most $73$. That group acts properly and cocompactly on a hyperbolic triangle building of type $(3,4,4)$. We also point out a variation of the construction that yields examples of lattices in $\tilde A_2$-buildings admitting non-Desarguesian residues of arbitrary prime power order.