癌症干细胞

C. Sweeney, L. Quek, Betty Gration, P. Vyas
{"title":"癌症干细胞","authors":"C. Sweeney, L. Quek, Betty Gration, P. Vyas","doi":"10.1093/MED/9780198779452.003.0020","DOIUrl":null,"url":null,"abstract":"The concept of cancer stem cells (CSCs) emerged from our understanding of the way in which normal tissues are generated from multipotent stem cells. Regenerative tissues exhibit a cellular hierarchy of differentiation, which is maintained by stem cells. Evidence from experimental models has indicated that a similar hierarchy is seen in at least some cancers, where CSCs give rise to disordered and dysfunctional tissues, leading to disease. The CSC model proposes that tumours can be divided into at least two distinct populations. The stem cells are a specialized population of cancer cells with the unique property of long-term self-renewal that maintain the growth of the cancerous clone. These stem cells give rise to the second population of cells, which form the bulk of the tumour, and lack indefinite self-renewal. Recently, our understanding of CSCs has been refined through combining genetic, epigenetic, and functional models of tumorigenesis. Malignant transformation occurs as the result of sequential acquisition of genetic mutations. Capacity for self-renewal is essential for a clone to survive and progress to become cancerous. If an oncogenic mutation occurs in a cell that is incapable of self-renewal, the clone will become exhausted through differentiation. CSCs may survive anticancer chemotherapy and increasing evidence indicates their role in mediating treatment resistance and relapse. Therefore, strategies to eradicate cancers must effectively target the stem cells that maintain their growth. CSC-directed therapeutic strategies are currently being explored in experimental studies and clinical trials but reducing toxicity to normal tissue stem cells represents a significant challenge.","PeriodicalId":417236,"journal":{"name":"Oxford Textbook of Cancer Biology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer stem cells\",\"authors\":\"C. Sweeney, L. Quek, Betty Gration, P. Vyas\",\"doi\":\"10.1093/MED/9780198779452.003.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of cancer stem cells (CSCs) emerged from our understanding of the way in which normal tissues are generated from multipotent stem cells. Regenerative tissues exhibit a cellular hierarchy of differentiation, which is maintained by stem cells. Evidence from experimental models has indicated that a similar hierarchy is seen in at least some cancers, where CSCs give rise to disordered and dysfunctional tissues, leading to disease. The CSC model proposes that tumours can be divided into at least two distinct populations. The stem cells are a specialized population of cancer cells with the unique property of long-term self-renewal that maintain the growth of the cancerous clone. These stem cells give rise to the second population of cells, which form the bulk of the tumour, and lack indefinite self-renewal. Recently, our understanding of CSCs has been refined through combining genetic, epigenetic, and functional models of tumorigenesis. Malignant transformation occurs as the result of sequential acquisition of genetic mutations. Capacity for self-renewal is essential for a clone to survive and progress to become cancerous. If an oncogenic mutation occurs in a cell that is incapable of self-renewal, the clone will become exhausted through differentiation. CSCs may survive anticancer chemotherapy and increasing evidence indicates their role in mediating treatment resistance and relapse. Therefore, strategies to eradicate cancers must effectively target the stem cells that maintain their growth. CSC-directed therapeutic strategies are currently being explored in experimental studies and clinical trials but reducing toxicity to normal tissue stem cells represents a significant challenge.\",\"PeriodicalId\":417236,\"journal\":{\"name\":\"Oxford Textbook of Cancer Biology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxford Textbook of Cancer Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/MED/9780198779452.003.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford Textbook of Cancer Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MED/9780198779452.003.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症干细胞(CSCs)的概念源于我们对多能干细胞生成正常组织的理解。再生组织表现出由干细胞维持的细胞分化等级。来自实验模型的证据表明,至少在一些癌症中可以看到类似的层次结构,其中csc引起紊乱和功能失调的组织,从而导致疾病。CSC模型提出肿瘤至少可以分为两个不同的种群。干细胞是一种特殊的癌细胞群,具有长期自我更新的独特特性,可以维持癌变克隆的生长。这些干细胞产生第二种细胞群,形成肿瘤的大部分,并且缺乏无限的自我更新。最近,通过结合肿瘤发生的遗传、表观遗传和功能模型,我们对CSCs的理解得到了改进。恶性转化是由于基因突变的顺序获得而发生的。自我更新的能力对于克隆体的生存和癌变至关重要。如果在一个不能自我更新的细胞中发生致癌突变,克隆就会在分化中耗尽。CSCs可能在抗癌化疗中存活,越来越多的证据表明它们在介导治疗耐药和复发中的作用。因此,根除癌症的策略必须有效地针对维持其生长的干细胞。目前正在实验研究和临床试验中探索以csc为导向的治疗策略,但降低对正常组织干细胞的毒性是一个重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer stem cells
The concept of cancer stem cells (CSCs) emerged from our understanding of the way in which normal tissues are generated from multipotent stem cells. Regenerative tissues exhibit a cellular hierarchy of differentiation, which is maintained by stem cells. Evidence from experimental models has indicated that a similar hierarchy is seen in at least some cancers, where CSCs give rise to disordered and dysfunctional tissues, leading to disease. The CSC model proposes that tumours can be divided into at least two distinct populations. The stem cells are a specialized population of cancer cells with the unique property of long-term self-renewal that maintain the growth of the cancerous clone. These stem cells give rise to the second population of cells, which form the bulk of the tumour, and lack indefinite self-renewal. Recently, our understanding of CSCs has been refined through combining genetic, epigenetic, and functional models of tumorigenesis. Malignant transformation occurs as the result of sequential acquisition of genetic mutations. Capacity for self-renewal is essential for a clone to survive and progress to become cancerous. If an oncogenic mutation occurs in a cell that is incapable of self-renewal, the clone will become exhausted through differentiation. CSCs may survive anticancer chemotherapy and increasing evidence indicates their role in mediating treatment resistance and relapse. Therefore, strategies to eradicate cancers must effectively target the stem cells that maintain their growth. CSC-directed therapeutic strategies are currently being explored in experimental studies and clinical trials but reducing toxicity to normal tissue stem cells represents a significant challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信