{"title":"带电池并网光伏系统低复杂度闭环能量管理器","authors":"D. Licea, M. Ghogho","doi":"10.1109/SmartGridComm.2018.8587425","DOIUrl":null,"url":null,"abstract":"The efficiency of microgrids with storage capacity strongly depends on the energy management system (EMS) which controls the energy flows in the system, including the charging and discharging process of the storage component. In this paper we focus on a residential microgrid, which consists of a grid-tied PV system and a battery, and propose a new low-complexity closed-loop EMS based on a nonlinear and time-variant feedback. The main characteristic of the proposed EMS is that instead of directly optimizing the energy flows, it optimizes the parameters of a two-layer controller. This EMS is tested using real irradiance and electrical consumption measurements. Results show a satisfactory performance of the proposed EMS.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Complexity Closed-Loop Energy Manager for a Grid-Tied PV System with Battery\",\"authors\":\"D. Licea, M. Ghogho\",\"doi\":\"10.1109/SmartGridComm.2018.8587425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of microgrids with storage capacity strongly depends on the energy management system (EMS) which controls the energy flows in the system, including the charging and discharging process of the storage component. In this paper we focus on a residential microgrid, which consists of a grid-tied PV system and a battery, and propose a new low-complexity closed-loop EMS based on a nonlinear and time-variant feedback. The main characteristic of the proposed EMS is that instead of directly optimizing the energy flows, it optimizes the parameters of a two-layer controller. This EMS is tested using real irradiance and electrical consumption measurements. Results show a satisfactory performance of the proposed EMS.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low Complexity Closed-Loop Energy Manager for a Grid-Tied PV System with Battery
The efficiency of microgrids with storage capacity strongly depends on the energy management system (EMS) which controls the energy flows in the system, including the charging and discharging process of the storage component. In this paper we focus on a residential microgrid, which consists of a grid-tied PV system and a battery, and propose a new low-complexity closed-loop EMS based on a nonlinear and time-variant feedback. The main characteristic of the proposed EMS is that instead of directly optimizing the energy flows, it optimizes the parameters of a two-layer controller. This EMS is tested using real irradiance and electrical consumption measurements. Results show a satisfactory performance of the proposed EMS.