一种有效的大规模1.1正则化凸损失最小化方法

Kwangmoo Koh, Seung-Jean Kim, Stephen Boyd
{"title":"一种有效的大规模1.1正则化凸损失最小化方法","authors":"Kwangmoo Koh, Seung-Jean Kim, Stephen Boyd","doi":"10.1109/ITA.2007.4357584","DOIUrl":null,"url":null,"abstract":"Convex loss minimization with lscr1 regularization has been proposed as a promising method for feature selection in classification (e.g., lscr1-regularized logistic regression) and regression (e.g., lscr1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale lscr1-regularized convex loss minimization problems that uses a preconditioned conjugate gradient method to compute the search step. The method can solve very large problems. For example, the method can solve an lscr1-regularized logistic regression problem with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC.","PeriodicalId":439952,"journal":{"name":"2007 Information Theory and Applications Workshop","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization\",\"authors\":\"Kwangmoo Koh, Seung-Jean Kim, Stephen Boyd\",\"doi\":\"10.1109/ITA.2007.4357584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convex loss minimization with lscr1 regularization has been proposed as a promising method for feature selection in classification (e.g., lscr1-regularized logistic regression) and regression (e.g., lscr1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale lscr1-regularized convex loss minimization problems that uses a preconditioned conjugate gradient method to compute the search step. The method can solve very large problems. For example, the method can solve an lscr1-regularized logistic regression problem with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC.\",\"PeriodicalId\":439952,\"journal\":{\"name\":\"2007 Information Theory and Applications Workshop\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2007.4357584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2007.4357584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

具有lscr1正则化的凸损失最小化已被提出作为分类(例如lscr1正则化逻辑回归)和回归(例如lscr1正则化最小二乘)中特征选择的一种有前途的方法。本文描述了一种有效的求解大规模lscr1正则化凸损失最小化问题的内点法,该方法使用预条件共轭梯度法计算搜索步长。这种方法可以解决非常大的问题。例如,该方法可以在几分钟内在PC上解决具有一百万个特征和示例(例如,20个新闻组数据集)的lscr1正则化逻辑回归问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with lscr1 regularization has been proposed as a promising method for feature selection in classification (e.g., lscr1-regularized logistic regression) and regression (e.g., lscr1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale lscr1-regularized convex loss minimization problems that uses a preconditioned conjugate gradient method to compute the search step. The method can solve very large problems. For example, the method can solve an lscr1-regularized logistic regression problem with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信