应用本体和概率模型对周围事物进行人类活动识别

Yamada Naoharu, Kenji Sakamoto, G. Kunito, Yoshinori Isoda, K. Yamazaki, Satoshi Tanaka
{"title":"应用本体和概率模型对周围事物进行人类活动识别","authors":"Yamada Naoharu, Kenji Sakamoto, G. Kunito, Yoshinori Isoda, K. Yamazaki, Satoshi Tanaka","doi":"10.2197/IPSJDC.3.506","DOIUrl":null,"url":null,"abstract":"This paper proposes human activity recognition based on the actual semantics of the human's current location. Since no predefined semantics of location can adequately identify human activity, we automatically identify the semantics from things by focusing on the association between things and human activities with the things. Ontology is used to deal with the various possible representations (terms) of each thing, identified by a RFID tag, and a multi-class Naive Bayesian approach is applied to detect multiple actual semantics from the terms. Our approach is suitable for automatically detecting possible activities even given a variety of object characteristics including multiple representations and variability. Simulations with actual thing datasets and experiments in an actual environment demonstrate its noise tolerance and ability to rapidly detect multiple actual semantics from existing things.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Applying Ontology and Probabilistic Model to Human Activity Recognition from Surrounding Things\",\"authors\":\"Yamada Naoharu, Kenji Sakamoto, G. Kunito, Yoshinori Isoda, K. Yamazaki, Satoshi Tanaka\",\"doi\":\"10.2197/IPSJDC.3.506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes human activity recognition based on the actual semantics of the human's current location. Since no predefined semantics of location can adequately identify human activity, we automatically identify the semantics from things by focusing on the association between things and human activities with the things. Ontology is used to deal with the various possible representations (terms) of each thing, identified by a RFID tag, and a multi-class Naive Bayesian approach is applied to detect multiple actual semantics from the terms. Our approach is suitable for automatically detecting possible activities even given a variety of object characteristics including multiple representations and variability. Simulations with actual thing datasets and experiments in an actual environment demonstrate its noise tolerance and ability to rapidly detect multiple actual semantics from existing things.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.3.506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

本文提出了基于人类当前位置实际语义的人类活动识别方法。由于没有预定义的位置语义可以充分识别人类活动,我们通过关注事物之间的关联以及人类活动与事物之间的关联来自动识别事物的语义。本体用于处理由RFID标签标识的每个事物的各种可能表示(术语),并应用多类朴素贝叶斯方法从术语中检测多个实际语义。我们的方法适用于自动检测可能的活动,即使给定各种对象特征,包括多个表示和可变性。实际事物数据集的仿真和实际环境中的实验证明了其噪声容忍能力和从现有事物中快速检测多种实际语义的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Ontology and Probabilistic Model to Human Activity Recognition from Surrounding Things
This paper proposes human activity recognition based on the actual semantics of the human's current location. Since no predefined semantics of location can adequately identify human activity, we automatically identify the semantics from things by focusing on the association between things and human activities with the things. Ontology is used to deal with the various possible representations (terms) of each thing, identified by a RFID tag, and a multi-class Naive Bayesian approach is applied to detect multiple actual semantics from the terms. Our approach is suitable for automatically detecting possible activities even given a variety of object characteristics including multiple representations and variability. Simulations with actual thing datasets and experiments in an actual environment demonstrate its noise tolerance and ability to rapidly detect multiple actual semantics from existing things.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信