{"title":"作为序列的无穷交型:对Klop问题的新解答","authors":"Pierre Vial","doi":"10.1109/LICS.2017.8005103","DOIUrl":null,"url":null,"abstract":"We provide a type-theoretical characterization of weakly-normalizing terms in an infinitary lambda-calculus. We adapt for this purpose the standard quantitative (with non-idempotent intersections) type assignment system of the lambda-calculus to our infinite calculus.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Infinitary intersection types as sequences: A new answer to Klop's problem\",\"authors\":\"Pierre Vial\",\"doi\":\"10.1109/LICS.2017.8005103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a type-theoretical characterization of weakly-normalizing terms in an infinitary lambda-calculus. We adapt for this purpose the standard quantitative (with non-idempotent intersections) type assignment system of the lambda-calculus to our infinite calculus.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Infinitary intersection types as sequences: A new answer to Klop's problem
We provide a type-theoretical characterization of weakly-normalizing terms in an infinitary lambda-calculus. We adapt for this purpose the standard quantitative (with non-idempotent intersections) type assignment system of the lambda-calculus to our infinite calculus.