利用主题模型中基于距离的相似度进行用户意图检测

Asli Celikyilmaz, Dilek Z. Hakkani-Tür, Gökhan Tür, Ashley Fidler, D. Hillard
{"title":"利用主题模型中基于距离的相似度进行用户意图检测","authors":"Asli Celikyilmaz, Dilek Z. Hakkani-Tür, Gökhan Tür, Ashley Fidler, D. Hillard","doi":"10.1109/ASRU.2011.6163969","DOIUrl":null,"url":null,"abstract":"One of the main components of spoken language understanding is intent detection, which allows user goals to be identified. A challenging sub-task of intent detection is the identification of intent bearing phrases from a limited amount of training data, while maintaining the ability to generalize well. We present a new probabilistic topic model for jointly identifying semantic intents and common phrases in spoken language utterances. Our model jointly learns a set of intent dependent phrases and captures semantic intent clusters as distributions over these phrases based on a distance dependent sampling method. This sampling method uses proximity of words utterances when assigning words to latent topics. We evaluate our method on labeled utterances and present several examples of discovered semantic units. We demonstrate that our model outperforms standard topic models based on bag-of-words assumption.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Exploiting distance based similarity in topic models for user intent detection\",\"authors\":\"Asli Celikyilmaz, Dilek Z. Hakkani-Tür, Gökhan Tür, Ashley Fidler, D. Hillard\",\"doi\":\"10.1109/ASRU.2011.6163969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main components of spoken language understanding is intent detection, which allows user goals to be identified. A challenging sub-task of intent detection is the identification of intent bearing phrases from a limited amount of training data, while maintaining the ability to generalize well. We present a new probabilistic topic model for jointly identifying semantic intents and common phrases in spoken language utterances. Our model jointly learns a set of intent dependent phrases and captures semantic intent clusters as distributions over these phrases based on a distance dependent sampling method. This sampling method uses proximity of words utterances when assigning words to latent topics. We evaluate our method on labeled utterances and present several examples of discovered semantic units. We demonstrate that our model outperforms standard topic models based on bag-of-words assumption.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

口语理解的主要组成部分之一是意图检测,它允许识别用户的目标。意图检测的一个具有挑战性的子任务是从有限数量的训练数据中识别出带有意图的短语,同时保持良好的泛化能力。提出了一种新的概率主题模型,用于联合识别口语话语中的语义意图和常用短语。我们的模型共同学习一组意图相关的短语,并基于距离相关采样方法捕获语义意图聚类作为这些短语的分布。该采样方法利用单词的接近度来分配潜在主题。我们在标记的话语上评估了我们的方法,并给出了几个发现的语义单位的例子。我们证明了我们的模型优于基于词袋假设的标准主题模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting distance based similarity in topic models for user intent detection
One of the main components of spoken language understanding is intent detection, which allows user goals to be identified. A challenging sub-task of intent detection is the identification of intent bearing phrases from a limited amount of training data, while maintaining the ability to generalize well. We present a new probabilistic topic model for jointly identifying semantic intents and common phrases in spoken language utterances. Our model jointly learns a set of intent dependent phrases and captures semantic intent clusters as distributions over these phrases based on a distance dependent sampling method. This sampling method uses proximity of words utterances when assigning words to latent topics. We evaluate our method on labeled utterances and present several examples of discovered semantic units. We demonstrate that our model outperforms standard topic models based on bag-of-words assumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信