Mark Mercier, S. Phillips, Matt Shubert, Wenjie Dong
{"title":"多智能体、相对制导、导航和控制算法的地面测试","authors":"Mark Mercier, S. Phillips, Matt Shubert, Wenjie Dong","doi":"10.1109/PLANS46316.2020.9109954","DOIUrl":null,"url":null,"abstract":"The rise in small, distributed satellite applications has led to an increased interest in multi-agent, cooperative guidance, navigation, and control (GNC) strategies. In order to integrate and test algorithms associated with a multi-agent cooperative environment, the Cooperative Autonomous Networked Systems (CANS) Lab was developed. Multiple three-wheeled, omni-directional ground robots with on-board sensor suites enable hardware-in-the-loop testing while adhering to planar relative dynamics. A software framework has been established to enable accurate dynamics simulation using Clohessy-Wiltshire-Hill (CWH) dynamics. In this paper, the CANS lab is demonstrated through the use of an example formation flying application which incorporates uncertain scenario parameters.","PeriodicalId":273568,"journal":{"name":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Terrestrial Testing of Multi-Agent, Relative Guidance, Navigation, and Control Algorithms\",\"authors\":\"Mark Mercier, S. Phillips, Matt Shubert, Wenjie Dong\",\"doi\":\"10.1109/PLANS46316.2020.9109954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise in small, distributed satellite applications has led to an increased interest in multi-agent, cooperative guidance, navigation, and control (GNC) strategies. In order to integrate and test algorithms associated with a multi-agent cooperative environment, the Cooperative Autonomous Networked Systems (CANS) Lab was developed. Multiple three-wheeled, omni-directional ground robots with on-board sensor suites enable hardware-in-the-loop testing while adhering to planar relative dynamics. A software framework has been established to enable accurate dynamics simulation using Clohessy-Wiltshire-Hill (CWH) dynamics. In this paper, the CANS lab is demonstrated through the use of an example formation flying application which incorporates uncertain scenario parameters.\",\"PeriodicalId\":273568,\"journal\":{\"name\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS46316.2020.9109954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ION Position, Location and Navigation Symposium (PLANS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS46316.2020.9109954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Terrestrial Testing of Multi-Agent, Relative Guidance, Navigation, and Control Algorithms
The rise in small, distributed satellite applications has led to an increased interest in multi-agent, cooperative guidance, navigation, and control (GNC) strategies. In order to integrate and test algorithms associated with a multi-agent cooperative environment, the Cooperative Autonomous Networked Systems (CANS) Lab was developed. Multiple three-wheeled, omni-directional ground robots with on-board sensor suites enable hardware-in-the-loop testing while adhering to planar relative dynamics. A software framework has been established to enable accurate dynamics simulation using Clohessy-Wiltshire-Hill (CWH) dynamics. In this paper, the CANS lab is demonstrated through the use of an example formation flying application which incorporates uncertain scenario parameters.