基于深度学习的MANET路由异常检测方法

Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson
{"title":"基于深度学习的MANET路由异常检测方法","authors":"Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson","doi":"10.1109/MILCOM55135.2022.10017842","DOIUrl":null,"url":null,"abstract":"We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.","PeriodicalId":239804,"journal":{"name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing\",\"authors\":\"Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson\",\"doi\":\"10.1109/MILCOM55135.2022.10017842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.\",\"PeriodicalId\":239804,\"journal\":{\"name\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM55135.2022.10017842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM55135.2022.10017842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了DeepADMR,一种基于深度强化学习(DRL)的DeepCQ+ MANET路由策略的新型神经异常检测器。基于drl的算法(如DeepCQ+)的性能仅在训练和测试环境中得到验证,因此它们在战术领域的部署会带来很高的风险。DeepADMR基于时间差误差(TD-errors)实时监测DeepCQ+策略的意外行为,并通过经验和非参数累积和统计来检测异常场景。DeepCQ+设计通过多智能体权重共享近端策略优化(PPO)进行了稍微修改,以实现实时估计td误差。我们报告了DeepADMR在信道中断、高移动性水平和超出训练环境的网络规模存在下的性能,这表明了它的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing
We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信