Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson
{"title":"基于深度学习的MANET路由异常检测方法","authors":"Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson","doi":"10.1109/MILCOM55135.2022.10017842","DOIUrl":null,"url":null,"abstract":"We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.","PeriodicalId":239804,"journal":{"name":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing\",\"authors\":\"Alex Yahja, Saeed Kaviani, Bo Ryu, Jae H. Kim, Kevin Larson\",\"doi\":\"10.1109/MILCOM55135.2022.10017842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.\",\"PeriodicalId\":239804,\"journal\":{\"name\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM55135.2022.10017842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM55135.2022.10017842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DeepADMR: A Deep Learning based Anomaly Detection for MANET Routing
We developed DeepADMR, a novel neural anomaly detector for the deep reinforcement learning (DRL)-based DeepCQ+ MANET routing policy. The performance of DRL-based algorithms such as DeepCQ+ is only verified within the trained and tested environments, hence their deployment in the tactical domain induces high risks. DeepADMR monitors unexpected behavior of the DeepCQ+ policy based on the temporal difference errors (TD-errors) in real-time and detects anomaly scenarios with empirical and non-parametric cumulative-sum statistics. The DeepCQ+ design via multi-agent weight-sharing proximal policy optimization (PPO) is slightly modified to enable the real-time estimation of the TD-errors. We report the DeepADMR performance in the presence of channel disruptions, high mobility levels, and network sizes beyond the training environments, which shows its effectiveness.