缩小模型尺寸的深度卷积神经网络用于小足迹关键字识别

Tsung-Han Tsai, XinAn Lin
{"title":"缩小模型尺寸的深度卷积神经网络用于小足迹关键字识别","authors":"Tsung-Han Tsai, XinAn Lin","doi":"10.1109/icecs53924.2021.9665618","DOIUrl":null,"url":null,"abstract":"This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting\",\"authors\":\"Tsung-Han Tsai, XinAn Lin\",\"doi\":\"10.1109/icecs53924.2021.9665618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了密集连接卷积网络(DenseNet)、群卷积和压缩激励网络(SENet)在关键词识别任务中的应用。我们使用谷歌语音命令数据集验证了该网络。我们提出的网络在参数数量和浮点运算(FLOPs)较少的情况下也比其他网络具有更好的精度。此外,我们还改变了网络的深度和宽度,构建了一个紧凑的变型网络。它也优于其他紧凑型变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting
This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信