{"title":"缩小模型尺寸的深度卷积神经网络用于小足迹关键字识别","authors":"Tsung-Han Tsai, XinAn Lin","doi":"10.1109/icecs53924.2021.9665618","DOIUrl":null,"url":null,"abstract":"This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting\",\"authors\":\"Tsung-Han Tsai, XinAn Lin\",\"doi\":\"10.1109/icecs53924.2021.9665618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reduced Model Size Deep Convolutional Neural Networks for Small-Footprint Keyword Spotting
This paper discussed the application of Densely Connected Convolutional Networks (DenseNet), group convolution, and squeeze-and-excitation Networks (SENet) in keyword spotting tasks. We validated the network using the Google Speech Commands Dataset. Our proposed network has better accuracy than other networks even with less number of parameters and floating-point operations (FLOPs). In addition, we varied the depth and width of the network to build a compact variant network. It also outperforms other compact variants.