用广义似然比法估计分布灵敏度

Yijie Peng, M. Fu, Jianqiang Hu
{"title":"用广义似然比法估计分布灵敏度","authors":"Yijie Peng, M. Fu, Jianqiang Hu","doi":"10.1109/WODES.2016.7497836","DOIUrl":null,"url":null,"abstract":"We propose a generalized likelihood ratio estimator for the distribution sensitivity in a general framework. Applications on quantile sensitivity, sensitivity of distortion risk measure, and gradient-based maximum likelihood estimation are put together under a single umbrella, and addressed uniformly by the proposed estimator. Numerical experiments substantiate the efficiency of the new method.","PeriodicalId":268613,"journal":{"name":"2016 13th International Workshop on Discrete Event Systems (WODES)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating distribution sensitivity using generalized likelihood ratio method\",\"authors\":\"Yijie Peng, M. Fu, Jianqiang Hu\",\"doi\":\"10.1109/WODES.2016.7497836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a generalized likelihood ratio estimator for the distribution sensitivity in a general framework. Applications on quantile sensitivity, sensitivity of distortion risk measure, and gradient-based maximum likelihood estimation are put together under a single umbrella, and addressed uniformly by the proposed estimator. Numerical experiments substantiate the efficiency of the new method.\",\"PeriodicalId\":268613,\"journal\":{\"name\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Workshop on Discrete Event Systems (WODES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WODES.2016.7497836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Workshop on Discrete Event Systems (WODES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2016.7497836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在一般框架下,提出了一种广义似然比估计方法。分位数灵敏度、失真风险度量灵敏度和基于梯度的最大似然估计的应用被放在一个单一的框架下,并由所提出的估计器统一解决。数值实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating distribution sensitivity using generalized likelihood ratio method
We propose a generalized likelihood ratio estimator for the distribution sensitivity in a general framework. Applications on quantile sensitivity, sensitivity of distortion risk measure, and gradient-based maximum likelihood estimation are put together under a single umbrella, and addressed uniformly by the proposed estimator. Numerical experiments substantiate the efficiency of the new method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信