自适应Erblet变换在生态数据中的应用

F. Sattar, S. Cullis-Suzuki, F. Jin
{"title":"自适应Erblet变换在生态数据中的应用","authors":"F. Sattar, S. Cullis-Suzuki, F. Jin","doi":"10.1109/ISSPIT.2016.7886056","DOIUrl":null,"url":null,"abstract":"In this paper, we address the preparation of ecological datasets for data mining. We propose a new adaptive method for automatic dataset construction using Erblet transform, which can be seen as a non-uniform filter bank where the center frequency and the bandwidth of each filter match the ERB (Equivalent Rectangular Bandwidth) scale, followed by data quality assessment using a tonality index (TI). Our ecological database consists of two naturally occurring fish calls produced by the plainfin midshipman fish, Porichthys notatus. The performance of the method is evaluated in terms of K-means clustering on the constructed datasets, and show promising results that would assist in long-term activity monitoring for fish data.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The use of adaptive Erblet transform with application to ecological data\",\"authors\":\"F. Sattar, S. Cullis-Suzuki, F. Jin\",\"doi\":\"10.1109/ISSPIT.2016.7886056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the preparation of ecological datasets for data mining. We propose a new adaptive method for automatic dataset construction using Erblet transform, which can be seen as a non-uniform filter bank where the center frequency and the bandwidth of each filter match the ERB (Equivalent Rectangular Bandwidth) scale, followed by data quality assessment using a tonality index (TI). Our ecological database consists of two naturally occurring fish calls produced by the plainfin midshipman fish, Porichthys notatus. The performance of the method is evaluated in terms of K-means clustering on the constructed datasets, and show promising results that would assist in long-term activity monitoring for fish data.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们讨论了用于数据挖掘的生态数据集的准备。本文提出了一种基于Erblet变换的自适应数据集自动构建方法,该方法可以看作是一个非均匀滤波器组,其中每个滤波器的中心频率和带宽匹配ERB(等效矩形带宽)尺度,然后使用调性指数(TI)对数据质量进行评估。我们的生态数据库由两种自然发生的鱼叫声组成,它们是由普通鳍鱼(Porichthys notatus)发出的。根据构建的数据集上的K-means聚类来评估该方法的性能,并显示出有希望的结果,这将有助于鱼类数据的长期活动监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of adaptive Erblet transform with application to ecological data
In this paper, we address the preparation of ecological datasets for data mining. We propose a new adaptive method for automatic dataset construction using Erblet transform, which can be seen as a non-uniform filter bank where the center frequency and the bandwidth of each filter match the ERB (Equivalent Rectangular Bandwidth) scale, followed by data quality assessment using a tonality index (TI). Our ecological database consists of two naturally occurring fish calls produced by the plainfin midshipman fish, Porichthys notatus. The performance of the method is evaluated in terms of K-means clustering on the constructed datasets, and show promising results that would assist in long-term activity monitoring for fish data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信