设计一个基于字形的极坐标图来解释机器学习模型的结果

Trung Nguyen, David Gentile, G. Jamieson, R. Gosine, Hakimeh Purmehdi
{"title":"设计一个基于字形的极坐标图来解释机器学习模型的结果","authors":"Trung Nguyen, David Gentile, G. Jamieson, R. Gosine, Hakimeh Purmehdi","doi":"10.1177/10648046231166047","DOIUrl":null,"url":null,"abstract":"Explainable artificial intelligence practices can support data scientists in interpreting the results of machine learning (ML) models. However, current practices require effortful and time-consuming coding to compare explanations that either relate to different ML models of the same data, or that are generated with different computational methods. We report the development of a glyph-based polar chart (GPC), designed to support a more comprehensive interpretation of the results of ML models by allowing these comparisons. The results from our user experience evaluation indicated that the proposed GPC supported data scientists in identifying the most relevant model variables, comparing different explanation methods, and performing logic reviews.","PeriodicalId":357563,"journal":{"name":"Ergonomics in Design: The Quarterly of Human Factors Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing a Glyph-Based Polar Chart to Interpret the Results of Machine Learning Models\",\"authors\":\"Trung Nguyen, David Gentile, G. Jamieson, R. Gosine, Hakimeh Purmehdi\",\"doi\":\"10.1177/10648046231166047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explainable artificial intelligence practices can support data scientists in interpreting the results of machine learning (ML) models. However, current practices require effortful and time-consuming coding to compare explanations that either relate to different ML models of the same data, or that are generated with different computational methods. We report the development of a glyph-based polar chart (GPC), designed to support a more comprehensive interpretation of the results of ML models by allowing these comparisons. The results from our user experience evaluation indicated that the proposed GPC supported data scientists in identifying the most relevant model variables, comparing different explanation methods, and performing logic reviews.\",\"PeriodicalId\":357563,\"journal\":{\"name\":\"Ergonomics in Design: The Quarterly of Human Factors Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergonomics in Design: The Quarterly of Human Factors Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/10648046231166047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergonomics in Design: The Quarterly of Human Factors Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10648046231166047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可解释的人工智能实践可以支持数据科学家解释机器学习(ML)模型的结果。然而,当前的实践需要费力和耗时的编码来比较与相同数据的不同ML模型相关的解释,或者用不同的计算方法生成的解释。我们报告了基于字形的极图(GPC)的发展,旨在通过允许这些比较来支持对ML模型结果的更全面的解释。我们的用户体验评估结果表明,提议的GPC支持数据科学家识别最相关的模型变量,比较不同的解释方法,并执行逻辑审查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing a Glyph-Based Polar Chart to Interpret the Results of Machine Learning Models
Explainable artificial intelligence practices can support data scientists in interpreting the results of machine learning (ML) models. However, current practices require effortful and time-consuming coding to compare explanations that either relate to different ML models of the same data, or that are generated with different computational methods. We report the development of a glyph-based polar chart (GPC), designed to support a more comprehensive interpretation of the results of ML models by allowing these comparisons. The results from our user experience evaluation indicated that the proposed GPC supported data scientists in identifying the most relevant model variables, comparing different explanation methods, and performing logic reviews.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信