基于多目标部件替换的泛锐化

Ghassem Khademi, H. Ghassemian
{"title":"基于多目标部件替换的泛锐化","authors":"Ghassem Khademi, H. Ghassemian","doi":"10.1109/PRIA.2017.7983056","DOIUrl":null,"url":null,"abstract":"This paper proposes a multi-objective approach to improving the component substitution (CS) based pansharpening method by obtaining the adaptive weights. The non-dominated sorting genetic algorithm II (NSGA-II) is employed to simultaneously optimize two objective functions. The inverse of the Correlation Coefficient (CC) and a weighted sum of the Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) in the spectral and spatial domains are used as the objective functions. The use of a multi-objective approach in the CS technique allows optimizing the fused image in terms of both spatial and spectral resolutions. Simulation results show that the proposed method outperforms popular CS-based fusion methods.","PeriodicalId":336066,"journal":{"name":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A multi-objective component-substitution-based pansharpening\",\"authors\":\"Ghassem Khademi, H. Ghassemian\",\"doi\":\"10.1109/PRIA.2017.7983056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a multi-objective approach to improving the component substitution (CS) based pansharpening method by obtaining the adaptive weights. The non-dominated sorting genetic algorithm II (NSGA-II) is employed to simultaneously optimize two objective functions. The inverse of the Correlation Coefficient (CC) and a weighted sum of the Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) in the spectral and spatial domains are used as the objective functions. The use of a multi-objective approach in the CS technique allows optimizing the fused image in terms of both spatial and spectral resolutions. Simulation results show that the proposed method outperforms popular CS-based fusion methods.\",\"PeriodicalId\":336066,\"journal\":{\"name\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRIA.2017.7983056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRIA.2017.7983056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文提出了一种多目标方法,通过获取自适应权值来改进基于分量替换的泛锐化方法。采用非支配排序遗传算法II (NSGA-II)同时优化两个目标函数。以相关系数(CC)的倒数和误差相对全局合成维数(ERGAS)在光谱域和空间域的加权和作为目标函数。在CS技术中使用多目标方法可以在空间和光谱分辨率方面优化融合图像。仿真结果表明,该方法优于目前流行的基于cs的融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-objective component-substitution-based pansharpening
This paper proposes a multi-objective approach to improving the component substitution (CS) based pansharpening method by obtaining the adaptive weights. The non-dominated sorting genetic algorithm II (NSGA-II) is employed to simultaneously optimize two objective functions. The inverse of the Correlation Coefficient (CC) and a weighted sum of the Erreur Relative Globale Adimensionnelle de Synthese (ERGAS) in the spectral and spatial domains are used as the objective functions. The use of a multi-objective approach in the CS technique allows optimizing the fused image in terms of both spatial and spectral resolutions. Simulation results show that the proposed method outperforms popular CS-based fusion methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信