一种新的三维分割方法,用于从动态对比增强MRI中分割前列腺,使用当前外观和学习形状先验

A. Firjani, A. Elnakib, F. Khalifa, A. El-Baz, G. Gimel'farb, M. El-Ghar, Adel Said Elmaghraby
{"title":"一种新的三维分割方法,用于从动态对比增强MRI中分割前列腺,使用当前外观和学习形状先验","authors":"A. Firjani, A. Elnakib, F. Khalifa, A. El-Baz, G. Gimel'farb, M. El-Ghar, Adel Said Elmaghraby","doi":"10.1109/ISSPIT.2010.5711751","DOIUrl":null,"url":null,"abstract":"Prostate segmentation is an essential step in developing any non-invasive Computer-Assisted Diagnostic (CAD) system for the early diagnosis of prostate cancer using Magnetic Resonance Images (MRI). In this paper, we propose, a novel framework for 3D segmentation of the prostate region from Dynamic Contrast Enhancement Magnetic Resonance Images (DCE-MRI). The framework is based on a maximum aposteriori (MAP) estimate of a new log-likelihood function that consists of three descriptors: (i) 1st-order visual appearance descriptors of the DCE-MRI, (ii) a 3D spatially invariant 2nd-order homogeneity descriptor, and (iii) a 3D prostate shape descriptor. The shape prior is learned from the co-aligned 3D segmented prostate DCE-MRI data. The visual appearances of the object and its background are described with marginal gray-level distributions obtained by separating their mixture over prostate volume. The spatial interactions between the prostate voxels are modeled by a 3D 2nd-order rotation-variant Markov-Gibbs random field (MGRF) of object/background labels with analytically estimated potentials. Experiments with real in vivo prostate DCE-MRI confirm the robustness and accuracy of the proposed approach.","PeriodicalId":308189,"journal":{"name":"The 10th IEEE International Symposium on Signal Processing and Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A novel 3D segmentation approach for segmenting the prostate from dynamic contrast enhanced MRI using current appearance and learned shape prior\",\"authors\":\"A. Firjani, A. Elnakib, F. Khalifa, A. El-Baz, G. Gimel'farb, M. El-Ghar, Adel Said Elmaghraby\",\"doi\":\"10.1109/ISSPIT.2010.5711751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate segmentation is an essential step in developing any non-invasive Computer-Assisted Diagnostic (CAD) system for the early diagnosis of prostate cancer using Magnetic Resonance Images (MRI). In this paper, we propose, a novel framework for 3D segmentation of the prostate region from Dynamic Contrast Enhancement Magnetic Resonance Images (DCE-MRI). The framework is based on a maximum aposteriori (MAP) estimate of a new log-likelihood function that consists of three descriptors: (i) 1st-order visual appearance descriptors of the DCE-MRI, (ii) a 3D spatially invariant 2nd-order homogeneity descriptor, and (iii) a 3D prostate shape descriptor. The shape prior is learned from the co-aligned 3D segmented prostate DCE-MRI data. The visual appearances of the object and its background are described with marginal gray-level distributions obtained by separating their mixture over prostate volume. The spatial interactions between the prostate voxels are modeled by a 3D 2nd-order rotation-variant Markov-Gibbs random field (MGRF) of object/background labels with analytically estimated potentials. Experiments with real in vivo prostate DCE-MRI confirm the robustness and accuracy of the proposed approach.\",\"PeriodicalId\":308189,\"journal\":{\"name\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2010.5711751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2010.5711751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

前列腺分割是开发任何非侵入性计算机辅助诊断(CAD)系统的必要步骤,用于使用磁共振图像(MRI)早期诊断前列腺癌。在本文中,我们提出了一种新的框架,用于从动态对比增强磁共振图像(DCE-MRI)中对前列腺区域进行三维分割。该框架基于一个新的对数似然函数的最大乘验(MAP)估计,该函数由三个描述符组成:(i) DCE-MRI的一阶视觉外观描述符,(ii)三维空间不变的二阶同质描述符,以及(iii)三维前列腺形状描述符。形状先验从共对齐的三维分割前列腺DCE-MRI数据中学习。视觉外观的对象和它的背景是描述与边际灰度分布通过分离他们的混合物在前列腺体积。前列腺体素之间的空间相互作用由具有分析估计电位的目标/背景标签的三维二阶旋转变马尔可夫-吉布斯随机场(MGRF)建模。真实体内前列腺DCE-MRI实验证实了该方法的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel 3D segmentation approach for segmenting the prostate from dynamic contrast enhanced MRI using current appearance and learned shape prior
Prostate segmentation is an essential step in developing any non-invasive Computer-Assisted Diagnostic (CAD) system for the early diagnosis of prostate cancer using Magnetic Resonance Images (MRI). In this paper, we propose, a novel framework for 3D segmentation of the prostate region from Dynamic Contrast Enhancement Magnetic Resonance Images (DCE-MRI). The framework is based on a maximum aposteriori (MAP) estimate of a new log-likelihood function that consists of three descriptors: (i) 1st-order visual appearance descriptors of the DCE-MRI, (ii) a 3D spatially invariant 2nd-order homogeneity descriptor, and (iii) a 3D prostate shape descriptor. The shape prior is learned from the co-aligned 3D segmented prostate DCE-MRI data. The visual appearances of the object and its background are described with marginal gray-level distributions obtained by separating their mixture over prostate volume. The spatial interactions between the prostate voxels are modeled by a 3D 2nd-order rotation-variant Markov-Gibbs random field (MGRF) of object/background labels with analytically estimated potentials. Experiments with real in vivo prostate DCE-MRI confirm the robustness and accuracy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信