有限快照下多维频率估计的统计可辨识性

Jun Liu, Xiangqian Liu
{"title":"有限快照下多维频率估计的统计可辨识性","authors":"Jun Liu, Xiangqian Liu","doi":"10.1109/SAM.2006.1706182","DOIUrl":null,"url":null,"abstract":"Recently much progress has been made to improve the identifiability of frequency estimation from one snapshot of multidimensional frequency data mixture. However, in the case of multiple snapshots (or multiple trials of experiments), there are few identifiability results available. With multiple data snapshots, most existing algebraic approaches estimate frequencies from the sample covariance matrix. In this work we provide an upper bound on the maximum number of multidimensional frequencies that can be estimated for a given data size with finite snapshots. We show how the identifiability bound increases as the number of snapshots increases. An eigenvector-based algorithm is also obtained for N-D frequency estimation. Simulation results show the proposed algorithm offers competitive performance when compared with existing algebraic algorithms but with reduced complexity","PeriodicalId":272327,"journal":{"name":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical Identifiability of Multidimensional Frequency Estimation with Finite Snapshots\",\"authors\":\"Jun Liu, Xiangqian Liu\",\"doi\":\"10.1109/SAM.2006.1706182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently much progress has been made to improve the identifiability of frequency estimation from one snapshot of multidimensional frequency data mixture. However, in the case of multiple snapshots (or multiple trials of experiments), there are few identifiability results available. With multiple data snapshots, most existing algebraic approaches estimate frequencies from the sample covariance matrix. In this work we provide an upper bound on the maximum number of multidimensional frequencies that can be estimated for a given data size with finite snapshots. We show how the identifiability bound increases as the number of snapshots increases. An eigenvector-based algorithm is also obtained for N-D frequency estimation. Simulation results show the proposed algorithm offers competitive performance when compared with existing algebraic algorithms but with reduced complexity\",\"PeriodicalId\":272327,\"journal\":{\"name\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2006.1706182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2006.1706182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,在提高多维频率数据混合的一次快照频率估计的可识别性方面取得了很大进展。然而,在多个快照(或多个实验试验)的情况下,很少有可识别的结果可用。对于多个数据快照,大多数现有的代数方法是从样本协方差矩阵估计频率。在这项工作中,我们提供了一个上限的多维频率的最大数量,可以估计给定的数据大小与有限的快照。我们将展示可识别性界限如何随着快照数量的增加而增加。给出了一种基于特征向量的N-D频率估计算法。仿真结果表明,与现有的代数算法相比,该算法具有较好的性能,但降低了算法的复杂度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Identifiability of Multidimensional Frequency Estimation with Finite Snapshots
Recently much progress has been made to improve the identifiability of frequency estimation from one snapshot of multidimensional frequency data mixture. However, in the case of multiple snapshots (or multiple trials of experiments), there are few identifiability results available. With multiple data snapshots, most existing algebraic approaches estimate frequencies from the sample covariance matrix. In this work we provide an upper bound on the maximum number of multidimensional frequencies that can be estimated for a given data size with finite snapshots. We show how the identifiability bound increases as the number of snapshots increases. An eigenvector-based algorithm is also obtained for N-D frequency estimation. Simulation results show the proposed algorithm offers competitive performance when compared with existing algebraic algorithms but with reduced complexity
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信