可满足模ode

Sicun Gao, Soonho Kong, E. Clarke
{"title":"可满足模ode","authors":"Sicun Gao, Soonho Kong, E. Clarke","doi":"10.1109/FMCAD.2013.6679398","DOIUrl":null,"url":null,"abstract":"We study SMT problems over the reals containing ordinary differential equations,. They are important for formal verification of realistic hybrid systems and embedded software. We develop δ-complete algorithms for SMT formulas that are purely existentially quantified, as well as ∃∀-formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.","PeriodicalId":346097,"journal":{"name":"2013 Formal Methods in Computer-Aided Design","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":"{\"title\":\"Satisfiability modulo ODEs\",\"authors\":\"Sicun Gao, Soonho Kong, E. Clarke\",\"doi\":\"10.1109/FMCAD.2013.6679398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study SMT problems over the reals containing ordinary differential equations,. They are important for formal verification of realistic hybrid systems and embedded software. We develop δ-complete algorithms for SMT formulas that are purely existentially quantified, as well as ∃∀-formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.\",\"PeriodicalId\":346097,\"journal\":{\"name\":\"2013 Formal Methods in Computer-Aided Design\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"95\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Formal Methods in Computer-Aided Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FMCAD.2013.6679398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Formal Methods in Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMCAD.2013.6679398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

摘要

我们研究了包含常微分方程的实数上的SMT问题。它们对于实际混合系统和嵌入式软件的形式化验证非常重要。我们开发了纯存在量化的SMT公式的δ完备算法,以及其普遍量化仅限于时间变量的∃∀公式。我们演示了算法的可扩展性,正如在我们的开源求解器dReal中实现的那样,在具有数百个非线性ode和变量的SMT基准测试中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Satisfiability modulo ODEs
We study SMT problems over the reals containing ordinary differential equations,. They are important for formal verification of realistic hybrid systems and embedded software. We develop δ-complete algorithms for SMT formulas that are purely existentially quantified, as well as ∃∀-formulas whose universal quantification is restricted to the time variables. We demonstrate scalability of the algorithms, as implemented in our open-source solver dReal, on SMT benchmarks with several hundred nonlinear ODEs and variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信