{"title":"约束随机匹配滤波子空间跟踪","authors":"Maissa Chagmani, B. Xerri, B. Borloz, C. Jauffret","doi":"10.1109/ISPA.2017.8073596","DOIUrl":null,"url":null,"abstract":"This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The constrained stochastic matched filter subspace tracking\",\"authors\":\"Maissa Chagmani, B. Xerri, B. Borloz, C. Jauffret\",\"doi\":\"10.1109/ISPA.2017.8073596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The constrained stochastic matched filter subspace tracking
This paper introduces a new fast algorithm named CSMFST which estimates the p-dimensional optimal subspace, i.e. where the signal-to-noise ratio is maximized in the case of n-dimensional nonstationary signals. We assume that we treat both signal and noise which are characterized by their samples. This algorithm is an SP-type algorithm and uses the same principles as the Yet Another Subspace Tracking (YAST) algorithm when estimating the covariance matrices. At each step, it estimates a matrix which spans the optimal subspace.