Tim Nelson, Natasha Danas, Theophilos Giannakopoulos, S. Krishnamurthi
{"title":"综合可变配置:为成功建立系统","authors":"Tim Nelson, Natasha Danas, Theophilos Giannakopoulos, S. Krishnamurthi","doi":"10.1109/ASEW.2019.00034","DOIUrl":null,"url":null,"abstract":"Numerous devices, from network switches and servers to industrial control systems, can be unreliable if they are not configured properly. Even if a device's implementation has been proven correct, it must still be configured to meet the specific functional and security requirements of its stakeholders. However, manual configuration remains labor intensive and error-prone even for experts. Automated configuration synthesis presents a promising way forward. Unfortunately, as we show, existing counterexample-guided algorithms can perform poorly if the system model allows configuration changes during execution. Yet disallowing such changes can hide significant problems, such as privilege escalation. We present a new synthesis algorithm that exploits structure inherent in state-machine models where the system configuration changes. We implement it using the Kodkod relational model finder, and show that it favorably solves a number of configuration-synthesis tasks.","PeriodicalId":277020,"journal":{"name":"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synthesizing Mutable Configurations: Setting up Systems for Success\",\"authors\":\"Tim Nelson, Natasha Danas, Theophilos Giannakopoulos, S. Krishnamurthi\",\"doi\":\"10.1109/ASEW.2019.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous devices, from network switches and servers to industrial control systems, can be unreliable if they are not configured properly. Even if a device's implementation has been proven correct, it must still be configured to meet the specific functional and security requirements of its stakeholders. However, manual configuration remains labor intensive and error-prone even for experts. Automated configuration synthesis presents a promising way forward. Unfortunately, as we show, existing counterexample-guided algorithms can perform poorly if the system model allows configuration changes during execution. Yet disallowing such changes can hide significant problems, such as privilege escalation. We present a new synthesis algorithm that exploits structure inherent in state-machine models where the system configuration changes. We implement it using the Kodkod relational model finder, and show that it favorably solves a number of configuration-synthesis tasks.\",\"PeriodicalId\":277020,\"journal\":{\"name\":\"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASEW.2019.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASEW.2019.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesizing Mutable Configurations: Setting up Systems for Success
Numerous devices, from network switches and servers to industrial control systems, can be unreliable if they are not configured properly. Even if a device's implementation has been proven correct, it must still be configured to meet the specific functional and security requirements of its stakeholders. However, manual configuration remains labor intensive and error-prone even for experts. Automated configuration synthesis presents a promising way forward. Unfortunately, as we show, existing counterexample-guided algorithms can perform poorly if the system model allows configuration changes during execution. Yet disallowing such changes can hide significant problems, such as privilege escalation. We present a new synthesis algorithm that exploits structure inherent in state-machine models where the system configuration changes. We implement it using the Kodkod relational model finder, and show that it favorably solves a number of configuration-synthesis tasks.